Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 4, Pages 1263–1267 (Mi fpm442)  

Short communications

Description of density orbits of semiregular nilpotent elements in simple Lie algebras of small dimensions

A. A. Sukhanov

M. V. Lomonosov Moscow State University
Abstract: In the paper the density orbits of semiregular nilpotent elements in simple Lie algebras of small dimensions are described.
Received: 01.03.1998
Bibliographic databases:
Document Type: Article
UDC: 512.813.4
Language: Russian
Citation: A. A. Sukhanov, “Description of density orbits of semiregular nilpotent elements in simple Lie algebras of small dimensions”, Fundam. Prikl. Mat., 5:4 (1999), 1263–1267
Citation in format AMSBIB
\Bibitem{Suk99}
\by A.~A.~Sukhanov
\paper Description of density orbits of semiregular nilpotent elements in simple Lie algebras of small dimensions
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 4
\pages 1263--1267
\mathnet{http://mi.mathnet.ru/fpm442}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1782967}
\zmath{https://zbmath.org/?q=an:1067.17504}
Linking options:
  • https://www.mathnet.ru/eng/fpm442
  • https://www.mathnet.ru/eng/fpm/v5/i4/p1263
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :121
    References:2
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026