|
|
Fundamentalnaya i Prikladnaya Matematika, 2000, Volume 6, Issue 1, Pages 81–92
(Mi fpm452)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On unconditional and absolute convergence of wavelet type series
S. V. Golovan' M. V. Lomonosov Moscow State University
Abstract:
In this paper we consider wavelet type systems, i. e. systems of type
$$
\{\psi_{mn}(x)=2^{m/2}\psi(2^mx-n)\},
$$
where $\psi\in L^2(\mathbb R)$ such that $\operatorname{supp}\psi\Subset\mathbb R$. Let $E$ be a set of real numbers. We prove the equivalence of absolute and unconditional convergence almost everywhere on $E$ of the series
$$
\sum_{\substack{m\geq 0\\ n\in\mathbb Z}}a_{mn}\psi_{mn}(x) .
$$
Received: 01.01.1997
Citation:
S. V. Golovan', “On unconditional and absolute convergence of wavelet type series”, Fundam. Prikl. Mat., 6:1 (2000), 81–92
Linking options:
https://www.mathnet.ru/eng/fpm452 https://www.mathnet.ru/eng/fpm/v6/i1/p81
|
|