|
|
Fundamentalnaya i Prikladnaya Matematika, 2000, Volume 6, Issue 2, Pages 617–620
(Mi fpm474)
|
|
|
|
Periodic trajectories in a Denjoy counterexample
L. K. Bakalinski Chelyabinsk State Pedagogical University
Abstract:
It is shown that for the parametric class of piecewise linear maps
$$
f(x)=\begin{cases}
\max(k_1x+1,w), &x<0,
\\
\min(k_2x-1,w), &x\geq0
\end{cases}
$$
($k_1$ and $k_2$ are greater than one) the range of the parameter $w$, where iterations
$x_{n+1}=f(x_n)$ are nonperiodic, has zero Lebesgue measure.
Received: 01.03.1997
Citation:
L. K. Bakalinski, “Periodic trajectories in a Denjoy counterexample”, Fundam. Prikl. Mat., 6:2 (2000), 617–620
Linking options:
https://www.mathnet.ru/eng/fpm474 https://www.mathnet.ru/eng/fpm/v6/i2/p617
|
|