Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 1, Pages 273–279 (Mi fpm630)  

On existence of unit in semicompact rings and topological rings with finiteness conditions

A. V. Khokhlov
References:
Abstract: We study quasi-unitary topological rings and modules ($m\in Rm$ $\forall m\in {}_RM$) and multiplicative stabilizers of their subsets. We give the definition of semicompact rings. The proved statements imply, in particular, that left quasi-unitariness of a separable ring $R$ is equvivalent to existence of its left unit, if $R$ has one of the following properties: 1) $R$ is (semi-)compact, 2) $R$ is left linearly compact, 3) $R$ is countably semicompact (countably left linearly compact) and has a dense countably generated right ideal, 4) $R$ is precompact and has a left stable neighborhood of zero, 5) $R$ has a dense finitely generated right ideal (e. g. $R$ satisfies the maximum condition for closed right ideals), 6) the module ${}_RR$ is topologically finitely generated and ${}^{\circ}\!R=0$.
Received: 01.12.1998
Bibliographic databases:
UDC: 512.556
Language: Russian
Citation: A. V. Khokhlov, “On existence of unit in semicompact rings and topological rings with finiteness conditions”, Fundam. Prikl. Mat., 8:1 (2002), 273–279
Citation in format AMSBIB
\Bibitem{Kho02}
\by A.~V.~Khokhlov
\paper On existence of unit in semicompact rings and topological rings with finiteness conditions
\jour Fundam. Prikl. Mat.
\yr 2002
\vol 8
\issue 1
\pages 273--279
\mathnet{http://mi.mathnet.ru/fpm630}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1920451}
\zmath{https://zbmath.org/?q=an:1023.16032}
Linking options:
  • https://www.mathnet.ru/eng/fpm630
  • https://www.mathnet.ru/eng/fpm/v8/i1/p273
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025