Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2002, Volume 8, Issue 2, Pages 567–610 (Mi fpm663)  

This article is cited in 4 scientific papers (total in 4 papers)

Algebraic approach in the “outer problem” for interval linear systems

S. P. Shary

Institute of Computing Technologies, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The subject of our work is the classical “outer” problem for the interval linear algebraic system $\mathbf{A}x=\mathbf{b}$ with the interval matrix $\mathbf{A}$ and right-hand side vector $\mathbf{b}$: find “outer” coordinate-wise estimates of the solution set formed by all solutions to the point systems $Ax=b$ with $A\in\mathbf{A}$ and $b\in\mathbf{b}$. The purpose of this work is to propose a new algebraic approach to the above problem, in which it reduces to solving one point (noninterval) equation in the Euclidean space of the double dimension. We construct a specialized algorithm (subdifferential Newton method) that implements the new approach, present results of its numerical tests. They demonstrate that the algebraic approach combines exclusive computational efficacy with high quality enclosures of the solution set.
Received: 01.07.1997
Bibliographic databases:
UDC: 519.61
Language: Russian
Citation: S. P. Shary, “Algebraic approach in the “outer problem” for interval linear systems”, Fundam. Prikl. Mat., 8:2 (2002), 567–610
Citation in format AMSBIB
\Bibitem{Sha02}
\by S.~P.~Shary
\paper Algebraic approach in the ``outer problem'' for interval linear systems
\jour Fundam. Prikl. Mat.
\yr 2002
\vol 8
\issue 2
\pages 567--610
\mathnet{http://mi.mathnet.ru/fpm663}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1939261}
\zmath{https://zbmath.org/?q=an:1027.65053}
Linking options:
  • https://www.mathnet.ru/eng/fpm663
  • https://www.mathnet.ru/eng/fpm/v8/i2/p567
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025