Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2003, Volume 9, Issue 4, Pages 55–103 (Mi fpm750)  

The Thom isomorphism for nonorientable bundles

E. G. Sklyarenko

M. V. Lomonosov Moscow State University
References:
Abstract: The classical theory of Thom isomorphisms is extended to nonorientable vector bundles. The properties of orientation sheaves of bundles and of the Thom and Euler classes $\tau$ and $e$ with respect to projections, fiber maps, Cartesian products, and Whitney sums of bundles are studied. The validity of standard constructions used in the applications of the classes $\tau$ and $e$ is confirmed. It is shown that the Thom isomorphisms, together with their form, are consequences of the Poincaré duality.
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 136, Issue 5, Pages 4166–4200
DOI: https://doi.org/10.1007/s10958-006-0226-3
Bibliographic databases:
UDC: 515.145.25
Language: Russian
Citation: E. G. Sklyarenko, “The Thom isomorphism for nonorientable bundles”, Fundam. Prikl. Mat., 9:4 (2003), 55–103; J. Math. Sci., 136:5 (2006), 4166–4200
Citation in format AMSBIB
\Bibitem{Skl03}
\by E.~G.~Sklyarenko
\paper The Thom isomorphism for nonorientable bundles
\jour Fundam. Prikl. Mat.
\yr 2003
\vol 9
\issue 4
\pages 55--103
\mathnet{http://mi.mathnet.ru/fpm750}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2093413}
\zmath{https://zbmath.org/?q=an:1073.55009}
\elib{https://elibrary.ru/item.asp?id=9068287}
\transl
\jour J. Math. Sci.
\yr 2006
\vol 136
\issue 5
\pages 4166--4200
\crossref{https://doi.org/10.1007/s10958-006-0226-3}
\elib{https://elibrary.ru/item.asp?id=13517186}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745674328}
Linking options:
  • https://www.mathnet.ru/eng/fpm750
  • https://www.mathnet.ru/eng/fpm/v9/i4/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025