Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1995, Volume 1, Issue 2, Pages 569–572 (Mi fpm84)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

The first regularized trace for a power of the Laplace operator on the rectangular triangle with the angle $\pi/6$ in case of Dirichlet problem

I. V. Tomina

Ivanovo State Power University
Full-text PDF (171 kB) Citations (1)
References:
Abstract: Consider the Hilbert space $H=L^2(D)$, where $D=\{(x,y)\mid 0\leq y\sqrt{3}\leq x\leq(2\pi-y\sqrt{3})/3\}$. Let $T$ be the self-adjoint non-negative operator from $H$ to $H$ which is generated by the spectral Dirichlet problem $\Delta u+\lambda u=0$ on $D$, $u=0$ on $\partial D$. For $p\in L^\infty(D)$ let the operator $P\colon H\to H$ take each $f\in H$ to the product $p\cdot f$. In this paper concrete formulas for the first regularized trace of the operator $T^\alpha+P$, $\alpha>3/2$, are given for different classes of essentially bounded functions $p$.
Received: 01.01.1995
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: I. V. Tomina, “The first regularized trace for a power of the Laplace operator on the rectangular triangle with the angle $\pi/6$ in case of Dirichlet problem”, Fundam. Prikl. Mat., 1:2 (1995), 569–572
Citation in format AMSBIB
\Bibitem{Tom95}
\by I.~V.~Tomina
\paper The first regularized trace for a power of the Laplace operator on the rectangular triangle with the angle~$\pi/6$ in case of Dirichlet problem
\jour Fundam. Prikl. Mat.
\yr 1995
\vol 1
\issue 2
\pages 569--572
\mathnet{http://mi.mathnet.ru/fpm84}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1790990}
\zmath{https://zbmath.org/?q=an:0866.35078}
Linking options:
  • https://www.mathnet.ru/eng/fpm84
  • https://www.mathnet.ru/eng/fpm/v1/i2/p569
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025