Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 3, Pages 141–150 (Mi fpm954)  

This article is cited in 1 scientific paper (total in 1 paper)

Distributive extensions of modules

A. A. Tuganbaev

Moscow Power Engineering Institute (Technical University)
Full-text PDF (122 kB) Citations (1)
References:
Abstract: Let $X$ be a submodule of a module $M$. The extension $X\subseteq M$ is said to be distributive if $X\cap(Y+Z)=X\cap Y+X\cap Z$ for any two submodules $Y$ and $Z$ of $M$. We study distributive extensions of modules over not necessarily commutative rings. In particular, it is proved that the following three conditions are equivalent: (1) $X_A\subseteq M_A$ is a distributive extension; (2) for any submodule $Y$ of the module $M$, no simple subfactor of the module $X/(X\cap Y)$ is isomorphic to any simple subfactor of $Y/(X\cap Y)$ (3) for any two elements $x\in X$ and $m\in M$, there does not exist a simple factor module of the cyclic module $xA/(X\cap mA)$ that is isomorphic to a simple factor module of the cyclic module $mA/(X\cap mA)$.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 149, Issue 3, Pages 1279–1285
DOI: https://doi.org/10.1007/s10958-008-0065-5
Bibliographic databases:
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “Distributive extensions of modules”, Fundam. Prikl. Mat., 12:3 (2006), 141–150; J. Math. Sci., 149:3 (2008), 1279–1285
Citation in format AMSBIB
\Bibitem{Tug06}
\by A.~A.~Tuganbaev
\paper Distributive extensions of modules
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 3
\pages 141--150
\mathnet{http://mi.mathnet.ru/fpm954}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2249711}
\zmath{https://zbmath.org/?q=an:1151.16004}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 149
\issue 3
\pages 1279--1285
\crossref{https://doi.org/10.1007/s10958-008-0065-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39049166572}
Linking options:
  • https://www.mathnet.ru/eng/fpm954
  • https://www.mathnet.ru/eng/fpm/v12/i3/p141
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025