Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2025, Volume 89, Issue 3, Pages 595–608
DOI: https://doi.org/10.4213/im9589e
(Mi im9589)
 

This article is cited in 1 scientific paper (total in 1 paper)

On completeness of the root function system of the $(2\times 2)$-Dirac operators with non-regular boundary conditions

A. S. Makin

Institute of Applied Mathematics and Mechanics, Donetsk
References:
Abstract: The paper is concerned with completeness of the system of root functions of the $(2\times2)$-Dirac operator with summable complex-valued potential and non-regular boundary conditions. Sufficient conditions for completeness of the root function system of this operator are found.
Keywords: Dirac operator, non-regular boundary conditions, completeness of root function systems.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2025-1620
Supported by the Ministry of Science and Higher Education of Russian Federation under the program of regional Azov–Black Sea Mathematical Center (agreement no. 075-02-2025-1620).
Received: 29.03.2024
Revised: 14.10.2024
Published: 19.06.2025
Bibliographic databases:
Document Type: Article
UDC: 517.984.52
MSC: Primary 34L40; Secondary 34L10
Language: English
Original paper language: Russian

§ 1. Introduction

In the present paper, we study the Dirac system

$$ \begin{equation} B\mathbf{y}'+V\mathbf{y} =\lambda\mathbf{y}, \end{equation} \tag{1} $$
with two-point boundary conditions
$$ \begin{equation} \begin{aligned} \, U_1(\mathbf{y}) &= a_{11}y_1(0)+a_{12}y_2(0)+a_{13}y_1(\pi)+ a_{14}y_2(\pi)=0, \\ U_2(\mathbf{y}) &= a_{21}y_1(0)+a_{22}y_2(0)+a_{23}y_1(\pi)+ a_{24}y_2(\pi)=0, \end{aligned} \end{equation} \tag{2} $$
where $\mathbf{y}=\operatorname{col}(y_1(x),y_2(x))$,
$$ \begin{equation*} B=\begin{pmatrix} -i&0\\ 0&i \end{pmatrix},\qquad V=\begin{pmatrix} 0&P(x)\\ Q(x)&0 \end{pmatrix}, \end{equation*} \notag $$
the functions $P, Q$ lie in $L_1(0,\pi)$, the coefficients $a_{jk}$ are arbitrary complex numbers, and the rows of the matrix
$$ \begin{equation*} A=\begin{pmatrix} a_{11}&a_{12}&a_{13} &a_{14} \\ a_{21}&a_{22}&a_{23} &a_{24} \end{pmatrix} \end{equation*} \notag $$
are linearly independent.

The operator $\mathbb{L}\mathbf{y}=B\mathbf{y}'+V\mathbf{y}$ is as a linear operator in $\mathbb{H}=L_2(0,\pi)\oplus L_2(0,\pi)$, with domain $D(\mathbb{L})=\{\mathbf{y}\in W_1^1[0,\pi]\oplus W_1^1[0,\pi]\colon \mathbb{L}\mathbf{y}\in \mathbb{H},\, U_j(\mathbf{y})=0\, (j=1,2)\}$.

Let $A_{jk}$ $(1\leqslant j<k\leqslant4)$ be the determinant composed of the $j$th and $k$th columns of the matrix $A$. Boundary conditions (2) are called regular if

$$ \begin{equation*} A_{14}A_{23}\ne0; \end{equation*} \notag $$
otherwise, they are non-regular.

Birkhoff and Langer [1] were the first to study the general spectral problem for $(n\times n)$ first-order systems of ordinary differential equations (ODEs) on a finite interval. More precisely, they introduced the concepts of regular and strictly regular boundary conditions, investigated the asymptotic behaviour of the eigenvalues and eigenfunctions, and proved that the spectral decompositions for the corresponding differential operator converge pointwise. The first result on completeness of the root functions is due to Ginzburg [2], who studied the case $B = I_n$, $V(\,{\cdot}\,) = 0$. Marchenko [3] showed that the system of root functions of the operator $\mathbb{L}$ with regular boundary conditions and continuous matrix potential $V$ is complete. This restriction occurs because the transformation operators used for the proof were constructed in [3] only for continuous potentials.

Later, Malamud and Oridoroga [4] verified completeness for $B$-weakly regular boundary value problems for arbitrary $(n\times n)$ first-order systems of ODEs with integrable matrix potential $V\in L^1([0,\pi];\mathbb{C}^{n\times n})$ (this result was announced in [5] in 2000).

Note that if conditions (2) are not regular, then the completeness property depends essentially on the potential $V$; in particular, in this case, the root function system of the unperturbed operator

$$ \begin{equation} B\mathbf{y}'=\lambda\mathbf{y},\quad U(\mathbf{y})=0 \end{equation} \tag{3} $$
is not complete in $\mathbb{H}$ (see [3]).

The first result on completeness for the $(2\times 2)$-Dirac-type operator $\mathbb{L}$ with matrix $B = \operatorname{diag}(b_1, b_2)$ and non-regular boundary conditions was obtained in [4]. Namely, it was shown that, with smooth $P,Q\in C^1[0,\pi]$, the system of root functions of the operator $\mathbb{L}$ is complete under the conditions

$$ \begin{equation} \begin{aligned} \, |A_{32}| + |b_1A_{13}P(0) + b_2A_{42}Q(\pi)| &\ne0, \\ |A_{14}| + |b_1A_{13}P(\pi) + b_2A_{42}Q(0)| &\ne0. \end{aligned} \end{equation} \tag{4} $$
In [6], similar results were obtained in the case of analytic $B\ne B^*$, $P$ and $Q$. The results in [6] and 4 depend on the method of transformation operators. Lunyov and Malamud [7], [8] generalized the results of [4] to establish potential-specific results on completeness and spectral synthesis results for the system of root functions of the $(n\times n$) system with non-weakly-regular boundary conditions assuming that the $n\times n$ potential matrix $V(\,{\cdot}\,)$ is continuous only at the end-points $0$ and $\pi$. In [9], Lunyov and Malamud extended completeness results from [4] for the $(2\times 2)$-Dirac-type operators $\mathbb{L}$ that involve boundary values $V^{(k)}(0)$ and $V^{(k)}(\pi)$, $k\in{0, 1,\ldots, m-1}$, of the derivatives of the potential $V \in W^m_2([0, \pi];C^{2\times 2})$.

Kosarev and Shkalikov [10] established completeness results in the case of $(2\times 2)$-Dirac-type operators with non-constant matrix $B = \operatorname{diag}(b_1(x), b_2(x))$ and degenerate boundary conditions of special form $(y_1(0) = y_2(\pi) = 0)$; these results are natural extensions of the corresponding results from [8] and [4].

So, the system of root functions of the operator $\mathbb{L}$ is complete whenever the functions $b_1$, $b_2$, $P$, and $Q$ are absolutely continuous and satisfy $P(\pi)Q(0)\ne0$.

Recently, Makin [11] obtained sufficient conditions for completeness for the root function system of problem (1), (2) with $A_{14}A_{23}=0$, $|A_{13}|+|A_{42}|>0$ and with potential $V$ from $L_1(0,\pi)$. In [9], Lunyov and Malamud strengthened their results announced in [9].

For a complete system of root functions, the question is whether this system forms a basis. Most complete result on the Riesz basis property of boundary value problems for $(2\times2$)-Dirac systems with $V(\,{\cdot}\,)\in L^1([0,1]; \mathbb{C}^{2\times2})$ and strongly regular boundary conditions were obtained independently and at the same time, but with different methods, by Savchuk and Shkalikov [13], and by Lunyov and Malamud [13] and [14]. The block Riesz basis property in the case of an $L_1$-potential matrix and regular boundary conditions was first proved in [13]. In [16], the author of the present paper, for spectral problems for the Dirac operator with regular but not strongly regular boundary conditions and complex-valued summable potential, obtained conditions under which the root function system forms a usual Riesz basis rather than a block Riesz basis.

The present paper is concerned with the completeness problem in the case $A_{13}=A_{42}=0$.

§ 2. Preliminaries

Let

$$ \begin{equation} E(x,\lambda)=\begin{pmatrix} e_{11}(x,\lambda)&e_{12}(x,\lambda) \\ e_{21}(x,\lambda)&e_{22}(x,\lambda) \end{pmatrix} \end{equation} \tag{5} $$
be the matrix of the fundamental solution system to equation (1) with boundary condition $E(0,\lambda)=I$, where $I$ is the identity matrix. It is well known (see [13], [14]) that
$$ \begin{equation} \begin{alignedat}{2} e_{11}(x,\lambda) &=e^{ix\lambda}(1+o(1))+e^{-ix\lambda}o(1), &\qquad e_{12}(x,\lambda) &=e^{ix\lambda}o(1)+e^{-ix\lambda}o(1), \\ e_{21}(x,\lambda) &=e^{ix\lambda}o(1)+e^{-ix\lambda}o(1), &\qquad e_{22}(x,\lambda) &=e^{ix\lambda}o(1)+e^{-ix\lambda}(1+o(1)) \end{alignedat} \end{equation} \tag{6} $$
as $\lambda\to\infty$ uniformly with respect to $x\in[0,\pi]$.

The eigenvalues of problem (1), (2) are the roots of the characteristic equation

$$ \begin{equation*} \Delta(\lambda)=0, \end{equation*} \notag $$
where
$$ \begin{equation*} \Delta(\lambda)= \begin{vmatrix} U_1(E^{[1]}(\,{\cdot}\,,\lambda))&U_1(E^{[2]}(\,{\cdot}\,,\lambda)) \\ U_2(E^{[1]}(\,{\cdot}\,,\lambda))&U_2(E^{[2]}(\,{\cdot}\,,\lambda)) \end{vmatrix}, \end{equation*} \notag $$
and $E^{[k]}(x,\lambda)$ is the $k$th column of matrix (5).

The machinery of triangular transformation operators was used in [14] to show that the characteristic determinant $\Delta(\lambda)$ of problem (1), (2) satisfies

$$ \begin{equation} \begin{aligned} \, \Delta(\lambda) &=A_{12}+A_{34}+A_{32}e_{11}(\pi,\lambda)+A_{14}e_{22}(\pi,\lambda)+A_{13}e_{12}(\pi,\lambda) +A_{42}e_{21}(\pi,\lambda) \nonumber \\ &=\Delta_0(\lambda)+\int_0^\pi r_1(t)e^{-i\lambda t}\, dt+\int_0^\pi r_2(t)e^{i\lambda t}\, dt, \end{aligned} \end{equation} \tag{7} $$
where the function
$$ \begin{equation*} \Delta_0(\lambda)=A_{12}+A_{34}-A_{23}e^{i\pi\lambda}+A_{14}e^{-i\pi\lambda} \end{equation*} \notag $$
is the characteristic determinant of problem (3), and $r_j\in L_1(0,\pi)$, $j=1,2$.

A representation similar to (7) was obtained in the recent paper [17] for the characteristic determinant for general first-order $(n\times n)$-systems of ODEs.

For convenience, we recall some commonly used relations from [11]. Let $\lambda$ be a complex number, $\operatorname{Im}\lambda\ne0$, $\rho>0$. Suppose that $\tau$ is continuous on $[0,\pi]$. Then, for any $b\in[0,\pi]$,

$$ \begin{equation} \biggl|\int_0^b x^\rho e^{-2|{\operatorname{Im}\lambda}| x}\tau(x)\, dx\biggr| \leqslant\frac{c}{|{\operatorname{Im}\lambda}|^{\rho+1}}, \end{equation} \tag{8} $$
where $c$ is independent of $b$. If $\tau\in L_1(0,\pi)$, then
$$ \begin{equation} \biggl|\int_0^\pi x^\rho e^{-2|{\operatorname{Im}\lambda}| x}\tau(x)\, dx\biggr| =\frac{o(1)}{|{\operatorname{Im}\lambda}|^{\rho}} \end{equation} \tag{9} $$
as $|\operatorname{Im}\mu|\to\infty$. In addition, simple computations show that if $\rho>0$, $\lambda>0$, $\rho\leqslant \pi\lambda$, then
$$ \begin{equation} \max_{0\leqslant x\leqslant \pi}x^\rho e^{-\lambda x}=\frac{\rho^\rho}{\lambda^\rho}e^{-\rho}. \end{equation} \tag{10} $$

We set

$$ \begin{equation} g_0(t,\lambda) =1, \end{equation} \tag{11} $$
$$ \begin{equation} g_1(t,\lambda) =\int_0^t e^{-2i\lambda t_1}P(t_1)\, dt_1\int_0^{t_1}e^{2i\lambda t_2}Q(t_2) \, dt_2, \end{equation} \tag{12} $$
$$ \begin{equation} \begin{aligned} \, g_n(t,\lambda) &=\int_0^t e^{-2i\lambda t_1}P(t_1) \, dt_1\int_0^{t_1}e^{2i\lambda t_2}Q(t_2) \,dt_2 \nonumber \\ &\qquad\times\dots\times \int_0^{t_{2n-2}}e^{-2i\lambda t_{2n-1}}P(t_{2n-1})\, dt_{2n-1} \int_0^{t_{2n-1}}e^{2i\lambda t_{2n}}Q(t_{2n})\, dt_{2n} \end{aligned} \end{equation} \tag{13} $$
and, similarly,
$$ \begin{equation} h_0(t,\lambda) =1, \end{equation} \tag{14} $$
$$ \begin{equation} h_1(t,\lambda) =\int_0^t e^{2i\lambda t_1}Q(t_1)\, dt_1\int_0^{t_1}e^{-2i\lambda t_2}P(t_2)\, dt_2, \end{equation} \tag{15} $$
$$ \begin{equation} \begin{aligned} \, h_n(t,\lambda) &=\int_0^t e^{2i\lambda t_1}Q(t_1) \, dt_1\int_0^{t_1}e^{-2i\lambda t_2}P(t_2) \, dt_2 \nonumber \\ &\qquad\times\dots\times \int_0^{t_{2n-2}} e^{2i\lambda t_{2n-1}}Q(t_{2n-1})\, dt_{2n-1} \int_0^{t_{2n-1}}e^{-2i\lambda t_{2n}}P(t_2) \, dt_{2n}. \end{aligned} \end{equation} \tag{16} $$

Lemma 1 (see [11]). The following representations hold:

$$ \begin{equation} e_{11}(t,\lambda) =e^{i\lambda t}\sum_{n=0}^\infty g_n(t,\lambda), \end{equation} \tag{17} $$
$$ \begin{equation} e_{22}(t,\lambda) =e^{-i\lambda t}\sum_{n=0}^\infty h_n(t,\lambda), \end{equation} \tag{18} $$
where, for each $\lambda$, the series in (17), (18) converge uniformly and absolutely on $[0,\pi]$.

§ 3. The main results

Let $0<\varepsilon<\pi/10$. Let $\Omega^+_\varepsilon$ and $\Omega^-_\varepsilon$ denote, respectively, the domains $\varepsilon\leqslant \arg\lambda\leqslant\pi-\varepsilon$ and $-\pi+\varepsilon\leqslant \arg\lambda\leqslant-\varepsilon$. For brevity, we write $\|f\|:=\|f\|_{L_1(0,\pi)}$. To prove that the system of root functions is complete, we first estimate the functions $e_{jj}(\pi,\lambda)$ $(j=1,2)$ in the domains $\Omega^+_\varepsilon$ and $\Omega^-_\varepsilon$, and then find a lower estimate for the characteristic determinant $\Delta(\lambda)$ in the domain $\Omega_\varepsilon=\Omega_\varepsilon^-\cup\Omega_\varepsilon^+$.

Lemma 2. Suppose that

$$ \begin{equation} \lim_{h\to0}\frac{\int_{\pi-h}^{\pi}P(x) \, dx}{h^{\rho_1}} =\nu_1\ne0,\qquad \lim_{h\to0}\frac{\int_0^hQ(x)\, dx}{h^{\rho_2}}=\nu_2\ne0, \end{equation} \tag{19} $$
where $\rho_1>0$, $\rho_2>0$.

Then, in the domain $\Omega_\varepsilon^+$,

$$ \begin{equation} |e_{11}(\pi,\lambda)|\geqslant \frac{c_1e^{\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}, \end{equation} \tag{20} $$
where $c_1>0$.

Proof. For later purposes, we need some inequalities. From (19) we have
$$ \begin{equation*} \int_0^hQ(x)\, dx=\nu_2h^{\rho_2}+h^{\rho_2}\tau_2(h), \end{equation*} \notag $$
where $\tau_2(h)\to0$ as $h\to0$, and the function $\tau_2(\,{\cdot}\,)$ is continuous. We set $\widehat P(x)= P(\pi-x)$. A similar analysis shows that
$$ \begin{equation*} \int_0^h\widehat P(x) \, dx=\nu_1h^{\rho_1}+h^{\rho_1}\tau_1(h), \end{equation*} \notag $$
where $\tau_1(h)\to0$ as $h\to0$, and the function $\tau_1(\,{\cdot}\,)$ continuous.

Let $0\leqslant t\leqslant\pi$. Integrating by parts, we obtain

$$ \begin{equation*} \begin{aligned} \, \int_0^t e^{2i\lambda y}Q(y) \, dy &= e^{2it\lambda}\int_0^t Q(y) \, dy - 2i\lambda \int_0^t e^{2i\lambda y}\, dy\, \biggl(\int_0^y Q(t_1) \, dt_1\biggr) \\ &=t^{\rho_2} e^{2it\lambda}(\nu_2 + \tau_2(t))-2i\lambda \int_0^t y^{\rho_2} e^{2i\lambda y}(\nu_2 + \tau_2(y)) \, dy. \end{aligned} \end{equation*} \notag $$
This together with (8) and (10) implies that
$$ \begin{equation} \biggl|\int_0^{t} e^{2i\lambda x}Q(x)\, dx\biggr|\leqslant\frac{c_2}{|{\operatorname{Im}\lambda}|^{\rho_2}}, \end{equation} \tag{21} $$
where $c_2$ is independent of $t$.

Setting $y=\pi-s$, integrating by parts, and substituting $\pi-t=v$, we obtain

$$ \begin{equation*} \begin{aligned} \, &\int_t^\pi e^{-2i\lambda y}P(y) \, dy = e^{-2i\pi\lambda}\int_0^{\pi-t}e^{2is\lambda}\widehat P(s) \, ds \\ &\qquad=e^{-2it\lambda}\int_0^{\pi-t}\widehat P(x) \, dx -2i\lambda e^{-2i\pi\lambda} \int_0^{\pi-t} e^{2i\lambda s} \, ds\, \biggl(\int_0^s\widehat P(x)\, ds\biggr) \\ &\qquad=(\pi-t)^{\rho_1} e^{-2it\lambda}(\nu_1 + \tau_1(\pi-t))-2i\lambda e^{-2i\pi\lambda}\int_0^{\pi-t} s^{\rho_1} e^{2i\lambda s}(\nu_1 + \tau_1(s)) \, ds \\ &\qquad= e^{-2i\pi\lambda}(v^{\rho_1} e^{2iv\lambda}(\nu_1 + \tau_1(v)))-2i\lambda\int_0^{\pi-t} s^{\rho_1} e^{2i\lambda s}(\nu_1 + \tau_1(s)) \, ds. \end{aligned} \end{equation*} \notag $$
The last equality together with (8) and (10) implies that
$$ \begin{equation} \biggl|\int_{t}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggr| \leqslant \frac{c_3e^{2\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_1}} \end{equation} \tag{22} $$
and
$$ \begin{equation} \biggl|\int_0^{\pi-t}e^{2i\lambda s}\widehat P(s)\, ds\biggr| \leqslant \frac{c_3}{|{\operatorname{Im}\lambda}|^{\rho_1}}, \end{equation} \tag{23} $$
where in both cases $c_3$ is independent of $t$.

Let us estimate the function

$$ \begin{equation*} g_1(\pi,\lambda)=\int_0^\pi e^{-2i\lambda t}P(t)\, dt\int_0^{t}e^{2i\lambda x}Q(x)\, dx. \end{equation*} \notag $$
Changing the order of integration, we obtain
$$ \begin{equation*} \begin{aligned} \, g_1(\pi,\lambda) &=\int_0^\pi e^{2i\lambda x}Q(x) \, dx\int_x^\pi e^{-2i\lambda t}P(t)\, dt \\ &=\int_0^\pi e^{2i\lambda x}Q(x)\, dx\, \biggl(\int_0^\pi e^{-2i\lambda t}P(t)\, dt-\int_0^x e^{-2i\lambda t} P(t)\, dt\biggr) \\ &=\int_0^\pi e^{2i\lambda x}Q(x)\, dx\int_0^\pi e^{-2i\lambda t}P(t)\, dt -\int_0^\pi e^{2i\lambda x}Q(x)\, dx \int_0^x e^{-2i\lambda t}P(t)\, dt. \end{aligned} \end{equation*} \notag $$
An appeal to Lemma 3.5 in [11] shows that
$$ \begin{equation} \biggl|\int_0^\pi e^{-2i\lambda t}P(t)\, dt\biggr| \geqslant \frac{c_4e^{2\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_1}} \end{equation} \tag{24} $$
$(c_4>0)$. Now, by Lemma 3.7 in [11],
$$ \begin{equation} \biggl|\int_0^\pi e^{2i\lambda x}Q(x)\, dx\biggr| \geqslant \frac{c_5}{|{\operatorname{Im}\lambda}|^{\rho_2}} \end{equation} \tag{25} $$
$(c_5>0)$. By the Hölder inequality,
$$ \begin{equation*} \begin{aligned} \, &\biggl|\int_0^\pi e^{2i\lambda x}Q(x)\, dx\int_0^x e^{-2i\lambda t}P(t)\, dt\biggr| \\ &\qquad\leqslant\int_0^\pi |Q(x)|\, dx\int_0^x |e^{2i\lambda (x-t)}P(t)| \, dt\leqslant \|Q\|\, \|P\|<c_6. \end{aligned} \end{equation*} \notag $$
From the last inequality and (24) and (25), we obtain
$$ \begin{equation} |g_1(\pi,\lambda)|\geqslant\frac{c_7e^{2\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}} \qquad (c_7>0). \end{equation} \tag{26} $$

Let us estimate the function $g_2(\pi,\lambda)$. Using (12), (13) and changing the order of integration, we obtain

$$ \begin{equation} \begin{aligned} \, g_2(\pi,\lambda) &=\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\int_0^{t_1}e^{2i\lambda t_2}Q(t_2)g_1(t_2,\lambda)\, dt_2 \nonumber \\ &= \int_0^\pi e^{2i\lambda t_2}Q(t_2)g_1(t_2,\lambda)\, dt_2\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \end{aligned} \end{equation} \tag{27} $$
and
$$ \begin{equation} \begin{aligned} \, &g_1(t_2,\lambda) =\int_0^{t_2} e^{2i\lambda x}Q(x)\, dx\int_x^{t_2} e^{-2i\lambda t}P(t)\, dt \nonumber \\ &\qquad= \int_0^{t_2} e^{2i\lambda x}Q(x)\, dx\, \biggl(\int_0^{t_2} e^{-2i\lambda t}P(t)\, dt -\int_0^x e^{-2i\lambda t}P(t)\, dt\biggr) \nonumber \\ &\qquad=\int_0^{t_2} e^{2i\lambda x}Q(x)\, dx\int_0^{t_2} e^{-2i\lambda t}P(t)\, dt-\int_0^{t_2} e^{2i\lambda x}Q(x)\, dx\int_0^x e^{-2i\lambda t}P(t)\, dt. \end{aligned} \end{equation} \tag{28} $$
Hence
$$ \begin{equation*} \begin{aligned} \, &g_2(\pi,\lambda) \\ &\quad= \int_0^\pi e^{2i\lambda t_2}Q(t_2)\, dt_2\int_0^{t_2} e^{2i\lambda x}Q(x)\, dx\int_0^{t_2} e^{-2i\lambda t} P(t)\, dt \int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \\ &\quad\qquad-\int_0^\pi e^{2i\lambda t_2}Q(t_2)\, dt_2\int_0^{t_2} e^{2i\lambda x}Q(x)\, dx\int_0^x e^{-2i\lambda t} P(t)\, dt\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \\ &\quad=I_1-I_2. \end{aligned} \end{equation*} \notag $$

An appeal to Lemma 3.4 in [11] shows that

$$ \begin{equation} \biggl|\int_0^{t_2} e^{-2i\lambda t}P(t)\, dt\biggr|=o(1)e^{2t_2|{\operatorname{Im}\lambda}|}. \end{equation} \tag{29} $$

Using the Hölder inequality and estimates (21), (22), (29), we find that

$$ \begin{equation} \begin{aligned} \, |I_1| &\leqslant \|Q\|\max_{0\leqslant t_2\leqslant\pi}\biggl|e^{2i\lambda t_2}\int_0^{t_2} e^{2i\lambda x}Q(x)\, dx \int_0^{t_2} e^{-2i\lambda t}P(t)\, dt\int_{t_2}^\pi e^{-2i\lambda t_1} P(t_1)\, dt_1\biggr| \nonumber \\ &=\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{aligned} \end{equation} \tag{30} $$

Consider $I_2$. It is clear that

$$ \begin{equation} I_2=\int_0^\pi e^{2i\lambda t_2}Q(t_2)\, dt_2\, \psi(t_2,\lambda)\int_{t_2}^\pi e^{-2i\lambda t_1} P(t_1)\, dt_1, \end{equation} \tag{31} $$
where
$$ \begin{equation*} \psi(t_2,\lambda)=\int_0^{t_2} e^{2i\lambda x}Q(x)\, dx\int_0^x e^{-2i\lambda t}P(t)\, dt. \end{equation*} \notag $$
From condition (19) we have
$$ \begin{equation} \int_0^{x}Q(s) \, ds=\gamma_2x^{\rho_2}+\gamma_2x^{\rho_2}\tau(x), \end{equation} \tag{32} $$
where the function $\tau(x)$ is continuous on $[0,\pi]$ and $\tau(0)=0$. Integrating by parts and using (32), we obtain
$$ \begin{equation} \begin{aligned} \, &\psi(t_2,\lambda) =\int_0^{t_2}\biggl[ e^{2i\lambda x}\int_0^x e^{-2i\lambda t}P(t)\, dt\biggr]\, d\int_0^xQ(s)\, ds \nonumber \\ &\qquad=e^{2i\lambda t_2}\int_0^{t_2}e^{-2i\lambda t}P(t)\, dt\int_0^{t_2}Q(s)\, ds \nonumber \\ &\qquad\qquad\!-2i\lambda\int_0^{t_2} e^{2i\lambda x}\, dx\int_0^x e^{-2i\lambda t} P(t)\, dt \int_0^xQ(s)\, ds -\int_0^{t_2}P(x)\, dx\int_0^xQ(s)\, ds \nonumber \\ &\qquad=[\gamma_2t_2^{\rho_2}+\gamma_2t_2^{\rho_2}\tau_2(t_2)]e^{2i\lambda t_2}\int_0^{t_2}e^{-2i\lambda t} P(t) \, dt \nonumber \\ &\qquad\qquad-2i\lambda\int_0^{t_2} [\gamma_2x^{\rho_2}+\gamma_2x^{\rho_2}\tau_2(x)]e^{2i\lambda x}\, dx \int_0^x e^{-2i\lambda t}P(t)\, dt \nonumber \\ &\qquad\qquad-\int_0^{t_2}[\gamma_2x^{\rho_2}+\gamma_2x^{\rho_2}\tau_2(x)]P(x)\, dx. \end{aligned} \end{equation} \tag{33} $$
Substituting (33) into (31), this gives
$$ \begin{equation} \begin{aligned} \, &\int_0^\pi e^{2i\lambda t_2}Q(t_2)\, dt_2 \biggl\{[\gamma_2t_2^{\rho_2}+\gamma_2t_2^{\rho_2}\tau_2(t_2)]e^{2i\lambda t_2}\int_0^{t_2}e^{-2i\lambda t} P(t) \, dt \nonumber \\ &\qquad-2i\lambda\int_0^{t_2} [\gamma_2x^{\rho_2}+\gamma_2x^{\rho_2}\tau_2(x)]e^{2i\lambda x}\, dx \int_0^x e^{-2i\lambda t}P(t)\, dt \nonumber \\ &\qquad-\int_0^{t_2}[\gamma_2x^{\rho_2}+\gamma_2x^{\rho_2}\tau_2(x)]P(x)\, dx\biggr\}\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \nonumber \\ &=\gamma_2\biggl\{\int_0^\pi [t_2^{\rho_2}+t_2^{\rho_2}\tau_2(t_2)]e^{2i\lambda t_2}Q(t_2)\, dt_2 \nonumber \\ &\qquad\qquad\times e^{2i\lambda t_2} \int_0^{t_2}e^{-2i\lambda t}P(t)\, dt\int_{t_2}^\pi e^{-2i\lambda t_1} P(t_1)\, dt_1 \nonumber \\ &\qquad-2i\lambda \int_0^\pi e^{2i\lambda t_2}Q(t_2)\, dt_2\int_0^{t_2} [x^{\rho_2}+x^{\rho_2}\tau_2(x)]e^{2i\lambda x}\, dx \nonumber \\ &\qquad\qquad\times\int_0^x e^{-2i\lambda t}P(t)\, dt\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \nonumber \\ &\qquad-\int_0^\pi e^{2i\lambda t_2}Q(t_2) \, dt_2 \int_0^{t_2}[x^{\rho_2}+x^{\rho_2}\tau_2(x)]P(x)\, dx\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggr\} \nonumber \\ &=\gamma_2\{I_{21}-I_{22}-I_{23}\}. \end{aligned} \end{equation} \tag{34} $$
Employing the Hölder inequality and inequalities (10), (22), (29), we obtain
$$ \begin{equation} \begin{aligned} \, |I_{21}| &\leqslant\|Q\|\max_{0\leqslant t_2\leqslant\pi}|t_2^{\rho_2}e^{2i\lambda t_2}|\max_{0\leqslant t_2\leqslant\pi}\biggl|e^{2i\lambda t_2} \int_0^{t_2}e^{-2i\lambda t}P(t)\, dt\biggr| \nonumber \\ &\qquad\times\max_{0\leqslant t_2\leqslant\pi}\biggl|\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggr|= \frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{aligned} \end{equation} \tag{35} $$
Now an appeal to the Hölder inequality, inequalities (8), $x\leqslant t_2$, Lemma 3.4 of [11], and (22) shows that
$$ \begin{equation} \begin{aligned} \, |I_{22}| &\leqslant\|Q\|\, |\lambda|\max_{0\leqslant t_2\leqslant\pi}\biggl| e^{2i\lambda t_2}\int_0^{t_2} [x^{\rho_2}+x^{\rho_2}\tau(x)]e^{2i\lambda x}\, dx \nonumber \\ &\qquad\times\int_0^x e^{-2i\lambda t}P(t)\, dt\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggr| \nonumber \\ &\leqslant\|Q\|\, |\lambda|\max_{0\leqslant t_2\leqslant\pi} \biggl|\int_0^{t_2} |x^{\rho_2}+x^{\rho_2}\tau(x)|e^{-2|{\operatorname{Im}\lambda}| x}\, dx\biggr| \nonumber \\ &\qquad\times\max_{0\leqslant t_2\leqslant\pi}\biggl|e^{2i\lambda t_2}\int_0^x e^{-2i\lambda t}P(t)\, dt\biggr| \max_{0\leqslant t_2\leqslant\pi}\biggl|\int_{t_2}^\pi e^{-2i\lambda t_1} P(t_1)\, dt_1\biggr| \nonumber \\ &=\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{aligned} \end{equation} \tag{36} $$
Next, by the Hölder inequality, (9), and (22), we have
$$ \begin{equation} \begin{aligned} \, |I_{23}| &\leqslant c_8\int_0^\pi t_2^{\rho_2}e^{-2|{\operatorname{Im}\lambda}| t_2}|Q(t_2)|\, dt_2 \int_0^{t_2}|P(x)|\, dx\biggl| \int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggr| \nonumber \\ &\leqslant c_9\|P\|\max_{0\leqslant t_2\leqslant\pi} \biggl|\int_{t_2}^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggr| \int_0^\pi t_2^{\rho_2}e^{-2|{\operatorname{Im}\lambda}| t_2}|Q(t_2)|\, dt_2 \nonumber \\ &=\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{aligned} \end{equation} \tag{37} $$
From (34), (36) and (37) we obtain
$$ \begin{equation*} |I_{2}|=\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{equation*} \notag $$
Combining the last inequality and (30), we have
$$ \begin{equation} g_2(\pi,\lambda)=\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{equation} \tag{38} $$

Assume that $n>2$. We set

$$ \begin{equation*} \begin{aligned} \, F_n(t_2,\lambda) &=\int_0^{t_2} e^{-2i\lambda t_3}P(t_3) \, dt_3\int_0^{t_3}e^{2i\lambda t_4} Q(t_4)\, dt_4 \\ &\qquad\times\dots\times \int_0^{t_{2n-2}}e^{-2i\lambda t_{2n-1}}P(t_{2n-1}) \, dt_{2n-1} \int_0^{t_{2n-1}}e^{2i\lambda t_{2n}}Q(t_{2n})\, dt_{2n}. \end{aligned} \end{equation*} \notag $$

It is easy to see that

$$ \begin{equation} \begin{aligned} \, g_n(\pi,\lambda) &=\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\int_0^{t_1}e^{2i\lambda t_2} Q(t_2) F_n(t_2,\lambda)\, dt_2 \nonumber \\ &=\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggl(\int_0^\pi e^{2i\lambda t_2}Q(t_2)F_n(t_2,\lambda)\, dt_2 \nonumber \\ &\qquad- \int_{t_1}^\pi e^{2i\lambda t_2}Q(t_2)F_n(t_2,\lambda)\, dt_2\biggr) \nonumber \\ &=q_n(\pi,\lambda)\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \nonumber \\ &\qquad-\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \int_{t_1}^\pi e^{2i\lambda t_2}Q(t_2)F_n(t_2,\lambda)\, dt_2, \end{aligned} \end{equation} \tag{39} $$
where
$$ \begin{equation} \begin{aligned} \, q_n(t,\lambda) &=\int_0^t e^{2i\lambda t_2}Q(t_2)F_n(t_2,\lambda)\,dt_2 \nonumber \\ &= \int_0^t e^{2i\lambda t_2}Q(t_2)\, dt_2\int_0^{t_2}e^{-2i\lambda t_3}P(t_3)\, dt_3\cdots\int_0^{t_{2n-1}} e^{2i\lambda t_{2n}}Q(t_{2n})\, dt_{2n}. \end{aligned} \end{equation} \tag{40} $$
Consider the first term on the right of (39). From 3.5 in [11] we have
$$ \begin{equation*} \biggl|\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1\biggr| \leqslant \frac{c_{10}e^{2\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_1}}. \end{equation*} \notag $$

Next, by Lemma 3.7 in [11],

$$ \begin{equation*} \sum_{n=3}^\infty |q_n(\pi,\lambda)|=\frac{o(1)}{|{\operatorname{Im}\lambda}|^{\rho_2}}, \end{equation*} \notag $$
and hence,
$$ \begin{equation} \sum_{n=3}^\infty |q_n(\pi,\lambda)|\biggl|\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \biggr| =\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{equation} \tag{41} $$

Let us estimate the second term in (39). Changing the order of integration and replacing $t_1=\pi-s$, we obtain

$$ \begin{equation*} \begin{aligned} \, I_3 &=\int_0^\pi e^{-2i\lambda t_1}P(t_1)\, dt_1 \int_{t_1}^\pi e^{2i\lambda t_2} Q(t_2)F_n(t_2,\lambda) \, dt_2 \\ &= \int_0^\pi e^{2i\lambda t_2}Q(t_2)F_n(t_2,\lambda)\, dt_2\int_0^{t_2}e^{-2i\lambda t_1}P(t_1)\, dt_1 \\ &=e^{-2i\pi\lambda}\int_0^\pi e^{2i\lambda t_2}Q(t_2)F_n(t_2,\lambda)\, dt_2\int_0^{\pi-t_2}e^{2i\lambda s} \widehat P(s)\, ds, \end{aligned} \end{equation*} \notag $$
where $\widehat P(s)=P(\pi-s)$. From the Hölder inequality and (23), we have
$$ \begin{equation} |I_3|\leqslant\frac{c_{11}e^{2\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_1}}\|Q\|\max_{0\leqslant t_2\leqslant\pi}|e^{2i\lambda t_2}F_n(t_2,\lambda)|. \end{equation} \tag{42} $$

Consider the function $F_n(t_2,\lambda)$ and define

$$ \begin{equation} \begin{aligned} \, \phi(t_4,\lambda)&=e^{2i\lambda t_4}Q(t_4)\int_0^{t_{4}}e^{-2i\lambda t_5}P(t_5) \, dt_5 \nonumber \\ &\qquad\times\dots\times \int_0^{t_{2n-2}}e^{-2i\lambda t_{2n-1}} P(t_{2n-1})\, dt_{2n-1} \int_0^{t_{2n-1}}e^{2i\lambda t_{2n}}Q(t_{2n})\, dt_{2n}. \end{aligned} \end{equation} \tag{43} $$
Changing the order of integration, we obtain
$$ \begin{equation} \begin{aligned} \, F_n(t_2,\lambda) &=\int_0^{t_2} e^{-2i\lambda t_3}P(t_3)\, dt_3\int_0^{t_3}\phi(t_4,\lambda)\, dt_4 \nonumber \\ &=\int_0^{t_2}\phi(t_4,\lambda)\, dt_4\int_{t_4}^{t_2}e^{-2i\lambda t_3}P(t_3)\, dt_3, \end{aligned} \end{equation} \tag{44} $$
and hence
$$ \begin{equation} |F_n(t_2,\lambda)|\leqslant\int_0^{t_2}|\phi(t_4,\lambda)|\, dt_4\biggl|\int_{t_4}^{t_2}e^{-2i\lambda t_3} P(t_3)\, dt_3\biggr|. \end{equation} \tag{45} $$
By Lemma 3.4 in [11],
$$ \begin{equation} \biggl|\int_{t_4}^{t_2}e^{-2i\lambda t_3}P(t_3)\, dt_3\biggr| =o(1)e^{2t_2|{\operatorname{Im}\lambda}|}. \end{equation} \tag{46} $$
An appeal to (45) and (46) shows that
$$ \begin{equation} |e^{2i\lambda t_2}F_n(t_2,\lambda)|=o(1)\int_0^{t_2}|\phi(t_4,\lambda)|\, dt_4. \end{equation} \tag{47} $$

Let us estimate the integral on the right-hand side of (47). From Lemma 3.1 in [11], (21), and since $t_j\geqslant t_{j+1}$, we have

$$ \begin{equation} \begin{aligned} \, &\int_0^{t_2}|\phi(t_4,\lambda)|\, dt_4 \leqslant\|Q\|\max_{0\leqslant t_4\leqslant\pi}\biggl|e^{2i\lambda t_4} \int_0^{t_{4}}e^{-2i\lambda t_5}P(t_5)\, dt_5 \nonumber \\ &\qquad\times\dots\times \int_0^{t_{2n-2}}e^{-2i\lambda t_{2n-1}} P(t_{2n-1})\, dt_{2n-1} \int_0^{t_{2n-1}}e^{2i\lambda t_{2n}}Q(t_{2n})\, dt_{2n}\biggr| \nonumber \\ &\leqslant \|Q\|\max_{0\leqslant t_4\leqslant\pi}\biggl|\int_0^{t_{4}}|P(t_5)|\, dt_5 \int_0^{t_{2n-2}}|e^{2i\lambda(t_4-t_5+t_6-\dots-t_{2n-1})}| \, |P(t_{2n-1})| \, dt_{2n-1} \nonumber \\ &\qquad\times\dots\times \int_0^{t_{2n-1}}e^{2i\lambda t_{2n}}Q(t_{2n})\, dt_{2n}\biggr| \nonumber \\ &\leqslant \frac{c_{12}^n}{(2n-4)!\, |{\operatorname{Im}\lambda}|^{\rho_2}}. \end{aligned} \end{equation} \tag{48} $$
Next, using (42), (47), (48), this gives
$$ \begin{equation} |I_3|=\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{equation} \tag{49} $$
From (39), (41), (49) we have
$$ \begin{equation} \sum_{n=3}^\infty |g_n(\pi,\lambda)| =\frac{e^{2\pi|{\operatorname{Im}\lambda}|}o(1)}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}}. \end{equation} \tag{50} $$

Now (20) follows from (17), (38), (26), (50). This proves Lemma 2.

Lemma 3. Suppose that

$$ \begin{equation} A_{14}\ne0,\qquad\lim_{h\to0}\frac{\int_0^hP(x)\, dx}{h^{\rho_3}}=\nu_3\ne0, \qquad \lim_{h\to0}\frac{\int_{\pi-h}^{\pi}Q(x)\, dx}{h^{\rho_4}}=\nu_4\ne0, \end{equation} \tag{51} $$
where $\rho_3>0$, $\rho_4>0$.

Then, in the domain $\Omega_\varepsilon^-$,

$$ \begin{equation} |e_{22}(\pi,\lambda)|\geqslant\frac{ce^{\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_3+\rho_4}}, \end{equation} \tag{52} $$
where $c>0$.

Proof. The required result is an easy consequence of the above analysis. Indeed, the estimate for the function $e_{22}(\,{\cdot}\,,{\cdot}\,)$ is obtained from (11)(18) if in formula (17) for the function $e_{11}(\,{\cdot}\,,{\cdot}\,)$ one replaces $\lambda$ by $-\lambda$ and swaps the functions $P$ and $Q$. This proves the lemma.

Our main result is the following theorem.

Theorem 1. Suppose that $A_{14}A_{32}=A_{13}=A_{24}=0$ and one of the following two conditions (53) and (54) is satisfied:

$$ \begin{equation} A_{14}\ne0,\qquad\lim_{h\to0}\frac{\int_0^hP(x)\, dx}{h^{\rho_3}}=\nu_3\ne0, \qquad \lim_{h\to0}\frac{\int_{\pi-h}^{\pi}Q(x)\, dx}{h^{\rho_4}}=\nu_4\ne0, \end{equation} \tag{53} $$
where $\rho_3>0$, $\rho_4>0$;
$$ \begin{equation} A_{32}\ne0,\qquad\lim_{h\to0}\frac{\int_{\pi-h}^{\pi}P(x)\, dx}{h^{\rho_1}}=\nu_1\ne0, \qquad\lim_{h\to0}\frac{\int_0^hQ(x)\, dx}{h^{\rho_2}}=\nu_2\ne0, \end{equation} \tag{54} $$
where $\rho_1>0$, $\rho_2>0$.

Then the root function system of problem (1), (2) is complete and minimal in $\mathbb{H}$.

Proof. Let $|\lambda|$ be sufficiently large. If (53) is met, then by (6)
$$ \begin{equation*} |e_{22}(\pi,\lambda)|\geqslant c_1e^{\pi|\operatorname{Im} \lambda|} \end{equation*} \notag $$
$(c_1>0)$ if $\lambda\in\Omega_\varepsilon^+$. By Lemma 3,
$$ \begin{equation*} |e_{22}(\pi,\lambda)|\geqslant\frac{c_2e^{\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_3+\rho_4}} \end{equation*} \notag $$
$(c_2>0)$ if $\lambda\in\Omega_\varepsilon^-$. Now by (7) we have
$$ \begin{equation*} |\Delta(\lambda)|\geqslant \frac{c_3e^{\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_3+\rho_4}} \end{equation*} \notag $$
$(c_3>0)$ in the domain $\Omega_\varepsilon$. A similar argument shows that
$$ \begin{equation*} |\Delta(\lambda)|\geqslant \frac{c_4e^{\pi|{\operatorname{Im}\lambda}|}}{|{\operatorname{Im}\lambda}|^{\rho_1+\rho_2}} \end{equation*} \notag $$
$(c_4>0)$ if (54) is met and $\lambda\in\Omega_\varepsilon$. Now by Theorem 2.3 in [8], in both cases the root function system of problem (1), (2) is complete and minimal in $\mathbb{H}$. This proves Theorem 1.

Remark 1. The case $A_{14}A_{23}=A_{13}=A_{42}=0$ was treated by Lunyov and Malamud in [12], where the more general first-order system

$$ \begin{equation} -i\widehat B^{-1}\mathbf{y}'+V\mathbf{y} =\lambda\mathbf{y}, \end{equation} \tag{55} $$
with boundary conditions (2) was considered, where $\mathbf{y}=\operatorname{col}(y_1(x),y_2(x))$,
$$ \begin{equation*} \widehat B=\begin{pmatrix} b_1 &0 \\ 0 & b_2 \end{pmatrix},\qquad V(x)=\begin{pmatrix} 0 &P(x) \\ Q(x) &0 \end{pmatrix}, \end{equation*} \notag $$
Proposition 2.2 of [12] asserts the completeness of the root function system for problem (55), (2) under the following conditions: $\arg b_1\ne \arg b_2$; the functions $P$ and $Q$ are continuous at the end-points $0$ and $\pi$; $A_{23}=A_{13}=A_{42}=0$, $A_{14}\ne0$ and $Q(0)P(\pi)\ne0$. Clearly, for the Dirac system ($b_2=-b_1=1)$, our Theorem 1 gives the same result without the continuity requirement at the end-points $0$ and $\pi$; this condition is replaced by the generalized continuity requirement in the sense of integral means.

The author wishes to express his deep gratitude to the referee.


Bibliography

1. G. D. Birkhoff and R. E. Langer, “The boundary problems and developments associated with a system of ordinary linear differential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58:2 (1923), 49–128  crossref  zmath
2. Yu. P. Ginzburg, “The almost invariant spectral properties of a contraction and multiplicative properties of analytic operator-functions”, Funct. Anal. Appl., 5:3 (1971), 197–205  crossref
3. V. A. Marchenko, Sturm–Liouville operators and applications, Oper. Theory Adv. Appl., 22, Birkhäuser Verlag, Basel, 1986  crossref  mathscinet  zmath
4. M. M. Malamud and L. L. Oridoroga, “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263:7 (2012), 1939–1980  crossref  mathscinet  zmath
5. M. M. Malamud and L. L. Oridoroga, “Completeness theorems for systems of differential equations”, Funct. Anal. Appl., 34:4 (2000), 308–310  crossref
6. A. V. Agibalova, M. M. Malamud, and L. L. Oridoroga, “On the completeness of general boundary value problems for $2\times2$ first order systems of ordinary differential equations”, Methods Funct. Anal. Topol., 18:1 (2012), 4–18  mathscinet  zmath
7. A. A. Lunyov and M. M. Malamud, “On spectral synthesis for dissipative Dirac type operators”, Integral Equations Operator Theory, 80:1 (2014), 79–106  crossref  mathscinet  zmath
8. A. A. Lunyov and M. M. Malamud, “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectr. Theory, 5:1 (2015), 17–70  crossref  mathscinet  zmath
9. A. A. Lunyov and M. M. Malamud, “On the completeness of systems of root vectors for first-order systems: application to the Regge problem”, Dokl. Math., 88:3 (2013), 678–683  crossref
10. A. P. Kosarev and A. A. Shkalikov, “Spectral asymptotics of solutions of a $2\times2$ system of first-order ordinary differential equations”, Math. Notes, 110:6 (2021), 967–971  crossref
11. A. Makin, “On the completeness of root function system of the Dirac operator with two-point boundary conditions”, Math. Nachr., 297:7 (2024), 2468–2487  crossref  mathscinet  zmath
12. A. A. Lunyov and M. M. Malamud, “On the completeness property of root vector systems for $2\times2$ Dirac type operators with non-regular boundary conditions”, J. Math. Anal. Appl., 543:2, Part 1 (2025), 128949  crossref  mathscinet  zmath
13. A. M. Savchuk and A. A. Shkalikov, “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810  mathnet  crossref  mathscinet  zmath
14. A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of root vectors system for $2\times2$ Dirac type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103  crossref  mathscinet  zmath
15. A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of the root vector system for Dirac-type $(2\times2)$ systems”, Dokl. Math., 90:2 (2014), 556–561  crossref
16. A. Makin, “On convergence of spectral expansions of Dirac operators with regular boundary conditions”, Math. Nachr., 295:1 (2022), 189–210  crossref  mathscinet  zmath
17. A. A. Lunyov and M. M. Malamud, On transformation operators and Riesz basis property of root vectors system for $n\times n$ Dirac type operators. Application to the Timoshenko beam model, arXiv: 2112.07248

Citation: A. S. Makin, “On completeness of the root function system of the $(2\times 2)$-Dirac operators with non-regular boundary conditions”, Izv. Math., 89:3 (2025), 595–608
Citation in format AMSBIB
\Bibitem{Mak25}
\by A.~S.~Makin
\paper On completeness of the root function system of~the~$(2\times 2)$-Dirac operators
with non-regular boundary conditions
\jour Izv. Math.
\yr 2025
\vol 89
\issue 3
\pages 595--608
\mathnet{http://mi.mathnet.ru/eng/im9589}
\crossref{https://doi.org/10.4213/im9589e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4918493}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025IzMat..89..595M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001537878200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105008686657}
Linking options:
  • https://www.mathnet.ru/eng/im9589
  • https://doi.org/10.4213/im9589e
  • https://www.mathnet.ru/eng/im/v89/i3/p179
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025