|
|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
| 1. |
E. A. Graniso, I. S. Kryukova, I. R. Nabiev, P. S. Samokhvalov, “Optimization of electrochemical etching parameters improves the quality factor of porous silicon microcavities”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 51:5 (2025), 7–10 |
|
2023 |
| 2. |
D. G. Gulevich, A. A. Tkach, I. R. Nabiev, V. A. Krivenkov, P. S. Samokhvalov, “Tuning the luminescence of thin nanocrystalline CsPbBr$_3$ perovskite films during the in situ anion exchange reaction”, Zhurnal Tekhnicheskoi Fiziki, 93:2 (2023), 256–263 |
1
|
| 3. |
E. S. Gerasimovich, A. A. Knysh, P. S. Samokhvalov, A. V. Sukhanova, I. R. Nabiev, “Hydrogels with controlled fluorescent properties based on quantum dots and diamine derivatives of polyethylene glycol”, Optics and Spectroscopy, 131:11 (2023), 1591–1600 |
| 4. |
A. A. Knysh, E. S. Gerasimovich, P. S. Samokhvalov, A. V. Sukhanova, I. R. Nabiev, “Resonance energy transfer in hydrogels based on quantum dots and capture antibodies: A prototype nanophotonic immunodiagnostic system”, Optics and Spectroscopy, 131:10 (2023), 1412–1417 |
| 5. |
A. A. Knysh, D. G. Gulevich, I. R. Nabiev, P. S. Samokhvalov, “Investigation of the stability of the optical characteristics of thin films based on CsPbBr$_3$ perovskite nanocrystals and p(MMA-LMA) copolymer”, Optics and Spectroscopy, 131:9 (2023), 1268–1273 |
| 6. |
P. S. Samokhvalov, A. V. Karaulov, I. R. Nabiev, “Control of the photoluminescence lifetime of quantum dots by engineering their shell structure”, Optics and Spectroscopy, 131:9 (2023), 1262–1267 |
| 7. |
K. E. Mochalov, P. S. Samokhvalov, Yu. K. Gun'ko, “Versatile tunable microresonator for the light-matter interaction studying in the strong-coupling mode”, Optics and Spectroscopy, 131:1 (2023), 104–110 |
|
2022 |
| 8. |
A. Yu. Saunina, A. A. Tkach, A. E. Aleksandrov, D. A. Lypenko, V. R. Nikitenko, I. R. Nabiev, P. S. Samokhvalov, “Luminance and efficiency of a light-emitting diode with transport-blocking poly(methyl methacrylate) layers and quantum dots: theoretical model, experiment, optimization”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 48:7 (2022), 8–11 |
|
2020 |
| 9. |
I. S. Kriukova, V. A. Krivenkov, P. S. Samokhvalov, I. R. Nabiev, “Weak coupling between light and matter in photonic crystals based on porous silicon responsible for the enhancement of fluorescence of quantum dots under two-photon excitation”, Pis'ma v Zh. Èksper. Teoret. Fiz., 112:9 (2020), 584–590 ; JETP Letters, 112:9 (2020), 537–542 |
1
|
|
2019 |
| 10. |
P. Linkov, P. Samokhvalov, K. Vokhmintsev, M. Zvaigzne, V. A. Krivenkov, I. Nabiev, “Optical properties of quantum dots with a core-multishell structure”, Pis'ma v Zh. Èksper. Teoret. Fiz., 109:2 (2019), 108–111 ; JETP Letters, 109:2 (2019), 112–115 |
30
|
| 11. |
P. S. Samokhvalov, D. O. Volodin, S. V. Bozrova, D. S. Dovzhenko, M. A. Zvaigzne, P. A. Lin'kov, G. O. Nifontova, I. O. Petrova, A. V. Sukhanova, I. R. Nabiev, “Conversion of semiconductor nanoparticles to plasmonic materials by targeted substitution of surface-bound organic ligands”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 45:7 (2019), 11–14 ; Tech. Phys. Lett., 45:4 (2019), 317–320 |
1
|
| 12. |
P. M. Sokolov, M. A. Zvaigzne, V. A. Krivenkov, A. P. Litvin, A. V. Baranov, A. V. Fedorov, P. S. Samokhvalov, I. R. Nabiev, “Graphene–quantum dot hybrid nanostructures with controlled optical and photoelectric properties for solar cell applications”, Usp. Khim., 88:4 (2019), 370–386 ; Russian Chem. Reviews, 88:4 (2019), 370–386 |
16
|
|
2018 |
| 13. |
P. A. Linkov, K. V. Vokhmintcev, P. S. Samokhvalov, M. Laronze-Cochard, J. Sapi, I. R. Nabiev, “Effect of the semiconductor quantum dot shell structure on fluorescence quenching by acridine ligand”, Pis'ma v Zh. Èksper. Teoret. Fiz., 107:4 (2018), 237–241 ; JETP Letters, 107:4 (2018), 233–237 |
12
|
| 14. |
Yu. A. Kuzishchin, I. L. Martynov, E. V. Osipov, P. S. Samokhvalov, A. A. Chistyakov, I. R. Nabiev, “Optimization of excitation and detection modes to detect ultra-small amounts of semiconductor quantum dots based on cadmium selenide”, Optics and Spectroscopy, 125:5 (2018), 682 ; Optics and Spectroscopy, 125:5 (2018), 760–764 |
| 15. |
V. A. Krivenkov, P. S. Samokhvalov, A. A. Chistyakov, I. Nabiev, “Quantum dots improve photovoltaic properties of purple membranes under near-infrared excitation”, Optics and Spectroscopy, 125:5 (2018), 679 ; Optics and Spectroscopy, 125:5 (2018), 747–750 |
1
|
| 16. |
S. A. Goncharov, V. A. Krivenkov, P. S. Samokhvalov, I. Nabiev, Yu. P. Rakovich, “Photoluminescence properties of thin-film nanohybrid material based on quantum dots and gold nanorods”, Optics and Spectroscopy, 125:5 (2018), 668 ; Optics and Spectroscopy, 125:5 (2018), 726–730 |
1
|
| 17. |
D. A. Volgina, E. A. Stepanidenko, T. K. Kormilina, S. A. Cherevkov, A. Dubavik, M. A. Baranov, A. P. Litvin, A. V. Fedorov, A. V. Baranov, K. Takai, P. S. Samokhvalov, I. R. Nabiev, E. V. Ushakova, “Study of the optical properties of CdZnSe/ZnS-quantum dot–Au-nanoparticle complexes”, Optics and Spectroscopy, 124:4 (2018), 477–483 ; Optics and Spectroscopy, 124:4 (2018), 494–500 |
6
|
|
2017 |
| 18. |
M. A. Zvaigzne, A. E. Aleksandrov, P. S. Samokhvalov, I. L. Martynov, D. A. Lypenko, A. R. Tameev, V. R. Nikitenko, A. A. Chistyakov, “Influence of the surface ligand molecules length on the optical properties and photoconductivity of PbS quantum dot condensates”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:19 (2017), 21–27 ; Tech. Phys. Lett., 43:10 (2017), 879–881 |
5
|
|
2010 |
| 19. |
A. Kh. Vorobiev, V. Yu. Markov, N. A. Samokhvalova, P. S. Samokhvalov, S. I. Troyanov, L. N. Sidorov, “Stable trifluoromethylated fullerene radicals C<sub>60</sub>(CF<sub>3</sub>)<sub>15</sub> and C<sub>60</sub>(CF<sub>3</sub>)<sub>17</sub>”, Mendeleev Commun., 20:1 (2010), 7–9 |
9
|
|
| Organisations |
|
|