Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2024 |
1. |
A. B. Aleksandrov, V. V. Peller, “Functions of compact operators under trace class perturbations”, Algebra i Analiz, 36:1 (2024), 7–16 |
2. |
V. V. Peller, “Besov spaces in operator theory”, Russian Math. Surveys, 79:1, 1–52 |
3. |
A. B. Aleksandrov, V. V. Peller, “Haagerup tensor products and Schur multipliers”, Algebra i Analiz, 36:5 (2024), 70–85 |
|
2023 |
4. |
A.B. Aleksandrov and V.V. Peller, “Triangular projection on S_p, 0<p<1, and related inequalities”, Proc. Amer. Math. Soc., 151 (2023), 2559-2571 |
5. |
A. B. Aleksandrov, V. V. Peller, “Triangular projection on $\boldsymbol{S}_p,~0<p<1$, as $p$ approaches $1$”, Algebra i Analiz, 35:6 (2023), 1–13 |
|
2022 |
6. |
A.B. Aleksandrov and V.V. Peller, “Functions of perturbed commuting dissipative operators”, Math. Nachr., 295:6 (2022), 1042–1062
|
5
[x]
|
|
2023 |
7. |
A. B. Aleksandrov, V. V. Peller, “Functons of perturbed pairs of noncommuting dissipative operator”, St. Petersburg Math. J., 34:3 (2023), 379–392 |
8. |
A. B. Aleksandrov, V. V. Peller, “Functions of perturbed noncommuting unbounded self-adjoint operators”, St. Petersburg Math. J., 34:6 (2023), 913–927 |
|
2022 |
9. |
A. B. Aleksandrov, V. V. Peller, “Functions of pairs of unbounded noncommuting self-adjoint operators under perturbation”, Dokl. Math., 106:3 (2022), 407–411 |
|
2020 |
10. |
A. B. Aleksandrov, V. V. Peller, “Functions of perturbed pairs of non-commuting contractions”, Izv. Math., 84:4 (2020), 659–682 |
11. |
A.B. Aleksandrov and V.V. Peller, “Functions of noncommuting operators under perturbation of class $S_p$”, Math. Nachr., 293 (2020), 847–860 |
12. |
A.B. Aleksandrov and V.V. Peller, “Schur multipliers of Schatten–von Neumann classes $S_p$”, Journal Funct. Anal., 279 (2020), 108683
|
4
[x]
|
|
2019 |
13. |
M.M. Malamud, H. Neidhardt, V.V. Peller, “Absolute continuity of spectral shift”, J. Funct. Anal., 276, (2019), 1575–1621
|
11
[x]
|
14. |
A.B. Aleksandrov, V.V. Peller, “Dissipative operators and operator Lipschitz functions”, Proc. Amer. Math. Soc., 147:5 (2019) , 2081-2093
|
4
[x]
|
15. |
V.V. Peller, “Functions of commuting contractions under perturbation”, Math. Nachr., 292 (2019) , 1151 - 1160
|
6
[x]
|
16. |
A. B. Aleksandrov, V. V. Peller, D. S. Potapov, “On a Trace Formula for Functions of Noncommuting Operators”, Math. Notes, 106:4 (2019), 481–487 |
|
2018 |
17. |
V. V. Peller, “An elementary approach to operator Lipschitz type estimates”, Tribute to Victor Havin: 50 Years with Hardy Spaces, 261, Birkhäuser, Basel, 2018, 395–416. |
18. |
V. V. Peller, “Functions of triples of noncommuting self-adjoint operators under perturbations of class $\boldsymbol{S_p}$”, Proc. Amer. Math. Society, 146:4 (2018), 1699-1711
|
5
[x]
|
|
2017 |
19. |
A. B. Aleksandrov, V. V. Peller, “Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals”, Bulletin London Math. Soc., 49 (2017), 463–479
|
13
[x]
|
20. |
M. M. Malamud, H. Neidhardt, V. V. Peller, “Analytic operator Lipschitz functions in the disk and a trace formula for functions of contractions”, Funct. Anal. Appl., 51:3 (2017), 185–203 |
21. |
M. M. Malamud, H. Neidhardt, V. V. Peller, “A trace formula for functions of contractions and analytic operator Lipschitz functions”, C. R. Math. Acad. Sci. Paris, 355 (2017), 806–811
|
3
[x]
|
|
2016 |
22. |
A. B. Aleksandrov, V. V. Peller, “Krein's trace formula for unitary operators and operator Lipschitz functions”, Funct. Anal. Appl., 50:3 (2016), 167–175 |
23. |
A. B. Aleksandrov, V. V. Peller, “Operator Lipschitz functions”, Russian Math. Surveys, 71:4 (2016), 605–702 |
24. |
V. V. Peller, “Comments on the paper N.J. Kalton and C. Le Merdy “Solution of a problem of Peller concerning similarity””, Nigel J. Kalton Selecta, V. 1, Contemporary Mathematicians, Birkhäuser, Basel, 2016, 335–338 |
25. |
V. V. Peller, “Multiple operator integrals in perturbation theory”, Bull. Math. Sci., 6 (2016), 15–88
|
31
[x]
|
26. |
A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals”, Adv. Math., 295 (2016), 1–-52 |
27. |
A. B. Aleksandrov, V. V. Peller, “Functions of almost commuting operators and an extension of the Helton–Howe trace formula”, J. Funct. Anal., 271 (2016), 3300–3322 |
28. |
V. V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207–5215 |
|
2015 |
29. |
A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Functions of perturbed noncommuting self-adjoint operators”, C. R. Acad. Sci. Paris, Sér. I, 353 (2015), 209-–214
|
2
[x]
|
30. |
A. B. Aleksandrov, V. V. Peller, “Almost commuting functions of almost commuting self-adjoint operators”, C. R. Acad. Sci. Paris, Sér. I, 353 (2015), 583–588
|
3
[x]
|
31. |
A. B. Aleksandrov, F. L. Nazarov, V. V. Peller, “Triple operator integrals in Schatten–von Neumann norms and functions of perturbed noncommuting operators”, C.R. Acad. Sci. Paris, Sér. I, 353 (2015), 723–728 |
|
2014 |
32. |
F. L. Nazarov, V. V. Peller, “Functions of perturbed $n$-tuples of commuting self-adjoint operators”, J. Funct. Anal., 266 (2014), 5398–-5428
|
15
[x]
|
|
2013 |
33. |
V. V. Peller, “Utilization of technology for mathematical talks”, Notices of the AMS, 60:2 (2013), 235–238 |
|
2012 |
34. |
A. B. Aleksandrov, V. V. Peller, “Operator and commutator moduli of continuity for normal operators”, Proc. London Math. Soc. (3), 105 (2012), 821-–851
|
10
[x]
|
35. |
V. V. Peller, “Selected problems in perturbation theory”, Topics in complex analysis and operator theory, Contemp. Math., 561, Amer. Math. Soc., Providence, RI, 2012, 67–90 |
36. |
F. L. Nazarov, V. V. Peller, “Functions of perturbed tuples of self-adjoint operators”, C.R. Acad. Sci. Paris, Sér. I, 350 (2012), 349–354
|
2
[x]
|
37. |
A. B. Aleksandrov, V. V. Peller, “Functions of perturbed dissipative operators”, St. Petersburg Math. J., 23:2 (2012), 209–238 |
|
2011 |
38. |
A. B. Aleksandrov, V. V. Peller, “Trace formulae for perturbations of class $\boldsymbol{S}_m$”, J. Spectral Theory,, 1 (2011), 1–26
|
12
[x]
|
39. |
A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of normal operators under perturbation”, Advances in Math., 226 (2011), 5216–5251
|
27
[x]
|
40. |
A. B. Aleksandrov, V. V. Peller, “Estimates of operator moduli of continuity”, J. Funct. Anal., 261 (2011), 2741-–2796
|
15
[x]
|
|
2010 |
41. |
A. B. Aleksandrov, V. V. Peller, “Operator Hölder–Zygmund functions”, Advances in Math., 224 (2010), 910–966
|
39
[x]
|
42. |
A. B. Aleksandrov, V. V. Peller, “Functions of operators under perturbations of class $\boldsymbol{S}_p$”, J. Funct. Anal., 258 (2010), 3675–3724
|
31
[x]
|
43. |
V. V. Peller, “The behavior of functions of operators under perturbations”, A glimpse at Hilbert space operators, Oper. Theory Adv. Appl., 207, Birkhäuser, Basel, 2010, 287–324
|
4
[x]
|
44. |
A. B. Aleksandrov, V. V. Peller, “Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities”, Indiana Univ. Math. J., 59 (2010), 1451–1490
|
12
[x]
|
45. |
A. B. Aleksandrov, V. V. Peller, D. Potapov, F. Sukochev, “Functions of perturbed normal operators”, C.R. Acad. Sci. Paris, Sér. I, 348 (2010), 553–558
|
2
[x]
|
|
2009 |
46. |
V. V. Peller, “Analytic approximation of matrix functions and dual extremal functions”, Proc. Amer. Math. Soc., 137 (2009), 205–210
|
2
[x]
|
47. |
F. L. Nazarov, L. Baratchart, V. V. Peller, “Analytic approximation of matrix functions in $L^p$”, J. Approx. Theory, 158 (2009), 242-278
|
6
[x]
|
48. |
V. V. Peller, “Differentiability of functions of contractions”, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 109–131 |
49. |
A. B. Aleksandrov, V. V. Peller, “Functions of perturbed operators”, C.R. Acad. Sci. Paris, Sér. I, 347 (2009), 483–488
|
8
[x]
|
50. |
F. L. Nazarov, V. V. Peller, “Lipschitz functions of perturbed operators”, C.R. Acad. Sci. Paris, Sér. I, 347 (2009), 857–862
|
13
[x]
|
|
2007 |
51. |
V. V. Peller, V. I. Vasyunin, “Analytic approximation of rational matrix functions”, Indiana Univ. Math. J., 56 (2007), 1913–1937
|
2
[x]
|
52. |
V. V. Peller, “On S. Mazur's problems 8 and 88 from the Scottish Book”, Stud. Math., 180 (2007), 191–198
|
3
[x]
|
|
2006 |
53. |
V. V. Peller, “Multiple operator integrals and higher operator derivatives”, J. Funct. Anal., 233 (2006), 515–544 |
54. |
St. Petersburg Math. J., 17:3 (2006), 493–510 |
|
2005 |
55. |
V. V. Peller, S. R. Treil, “Very badly approximable matrix functions}”, Selecta Math., 11 (2005), 127–154
|
4
[x]
|
56. |
V. V. Peller, “An extension of the Koplienko–Neidhardt trace formulae”, J. Funct. Anal., 221 (2005), 456–481 |
57. |
V. V. Peller, Operatory Gankelya i ikh prilozheniya, Sovremennaya matematika, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2005 , 1026 pp. |
|
2004 |
58. |
A. B. Aleksandrov, V. V. Peller, “Distorted Hankel operators”, Indiana Univ. Math. J., 53 (2004), 925–940
|
1
[x]
|
|
2003 |
59. |
V. V. Peller, Hankel Operators and their Applications, Springer Monographs in Mathematics, Springer–Verlag, Berlin, 2003 , 784 pp.
|
294
[x]
|
|
2002 |
60. |
A. B. Aleksandrov, V. V. Peller, “Hankel and Toeplitz-Schur multipliers”, Math. Ann., 324 (2002), 277–327
|
18
[x]
|
61. |
A. B. Aleksandrov, S. Janson, V. V. Peller, R. Rochberg, “An interesting class of operators with unusual Schatten–von Neumann behavior”, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, 61–149 |
|
2001 |
62. |
R. B. Alexeev, V. V. Peller, “Unitary interpolants and factorization indices of matrix functions”, J. Funct. Anal., 179 (2001), 43-65 |
63. |
R. B. Alexeev, V. V. Peller, “Invariance properties of thematic factorizations of matrix functions”, J. Funct. Anal., 179 (2001), 309-332 |
|
2000 |
64. |
V. V. Peller, “Regularity conditions for vectorial stationary processes”, Operator Theory: Advances and Applications, 113, Birkhäuser, Basel, 2000, 287-301 |
65. |
R. B. Alexeev, V. V. Peller, “Badly approximable matrix functions and canonical factorizations”, Indiana Univ. Math. J., 49 (2000), 1247–1285
|
2
[x]
|
|
1998 |
66. |
V. V. Peller, “An excursion into the theory of Hankel operators”, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 65–120 |
67. |
V. V. Peller, “Factorization and approximation problems for matrix functions”, J. Amer. Math. Soc., 11 (1998), 751-770 |
68. |
V. V. Peller, “Hereditary properties of solutions of the four block problem”, Indiana Univ. Math. J., 47 (1998), 177-197 |
|
1997 |
69. |
V. V. Peller, S. R. Treil, “Approximation by analytic matrix functions. The four-block problem”, J. Funct. Anal., 148 (1997), 191-228 |
70. |
V. V. Peller, N. J.Young, “Continuity properties of best analytic approximations”, J. Reine und Angew. Math., 483 (1997), 1-22 |
|
1996 |
71. |
V. V. Peller, N. J.Young, “Superoptimal approximation by meromorphic matrix functions”, Math. Proc. Camb. Phil. Soc., 119 (1996), 497-511
|
4
[x]
|
72. |
A. B. Aleksandrov, V. V. Peller, “Hankel operators and similarity to a contraction”, Int. Math. Res. Notices, 6 (1996), 263-275
|
16
[x]
|
|
1995 |
73. |
A. M. Megretskii, V. V. Peller, S. R. Treil, “The inverse spectral problem for self-adjoint Hankel operators”, Acta Math., 174 (1995), 241-309
|
33
[x]
|
74. |
V. V. Peller, N. J.Young, “Construction of superoptimal approximation”, Math. Control Signals Systems, 8 (1995), 497-511
|
4
[x]
|
75. |
V. V. Peller, “Approximation by analytic operator-valued functions”, Harmonic Analysis and Operor Theory (Caracas, 1994), Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995, 431-438
|
3
[x]
|
76. |
V. V. Peller, S. R. Treil, “Superoptimal singular values and indices of infinite matrix functions”, Ind. Univ. Math. J., 44 (1995), 243-255
|
1
[x]
|
|
1994 |
77. |
V. V. Peller, N. J.Young, “Superoptimal analytic approximations of matrix functions”, J. Funct. Anal., 120 (1994), 300-343
|
5
[x]
|
78. |
V. V. Peller, N. J.Young, “Superoptimal singular values and indices of matrix functions”, Int. Eq. Oper. Theory, 20 (1994), 350-363
|
5
[x]
|
|
1993 |
79. |
V. V. Peller, “Functional calculus for a pair of almost commuting selfadjoint operators”, J. Funct. Anal., 112 (1993), 325-345 |
80. |
V. V. Peller, “Invariant subspaces of Toeplitz operators with piecewise continuous symbols”, Proc. Amer. Math. Soc., 119 (1993), 171-178
|
1
[x]
|
81. |
A. M. Megretskii, V. V. Peller, S. R. Treil, “Le problème inverse pour les opérateurs de Hankel”, Comptes Rendus Acad. Sci, Paris, Séries I, 317 (1993), 343-346 |
|
1992 |
82. |
V. V. Peller, “Boundedness properties of the operators of best approximations by meromorphic functions”, Arkiv för Mat., 30 (1992), 331-343
|
2
[x]
|
|
1991 |
83. |
A. L. Vol'berg, V. V. Peller, D. V. Yakubovich, “A brief excursion into the theory of hyponormal operators”, Leningrad Math. J., 2:2 (1991), 211–243 |
84. |
V. V. Peller, “Hankel operators and continuity properties of best approximation operators”, Leningrad Math. J., 2:1 (1991), 139–160 |
|
1990 |
85. |
V. V. Peller, “Hankel operators and multivariate stationary processes”, Operator theory: operator algebras and applications, Part 1, Proc. Sympos. Pure Math. (Durham, NH, 1988), 51, Part 1, Amer. Math. Soc., Providence, RI, 1990, 357-371
|
7
[x]
|
86. |
V. V. Peller, “Hankel operators in the perturbation theory of unbounded selfadjoint operators”, Analysis and Partial Differential Equations. A Collection of Papers Dedicated to Misha Cotlar, Lecture Notes in Pure and Appl. Math.,, 122, Marcel Dekker, Inc., New York, 1990, 529-544 |
|
1989 |
87. |
V. V. Peller, “When is a function of a Toeplitz operator close to a Toeplitz operator?”, Operator Theory, 42, Birkhäuser, Basel, 1989, 59-85
|
4
[x]
|
|
1988 |
88. |
V. V. Peller, “Smoothness of Schmidt functions of smooth Hankel operators”, Function spaces and applications (Lund 1986), Lect. Notes Math., 1302, Springer-Verlag, Berlin, 1988, 237-246 |
89. |
V. V. Peller, “Wiener–Hopf operators on a finite interval and Schatten–von Neumann classes”, Proc. Amer. Math. Soc., 104 (1988), 479-486
|
6
[x]
|
|
1987 |
90. |
V. V. Peller, “Rational approximation in $L^p$ and Faber transforms”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, “Nauka”, Leningrad. Otdel., Leningrad, 1987, 70–75 |
91. |
V. V. Peller, “For which $f$ does $A-B\in\boldsymbol{S}_p$ imply that $f(A)-f(B)\in\boldsymbol{S}_p$?”, Operator Theory, 24, Birkhäuser, Basel, 1987, 289-294 |
92. |
V. V. Peller, “Spectrum, similarity, and invariant subspaces of Toeplitz operators”, Math. USSR-Izv., 29:1 (1987), 133–144 |
|
1986 |
93. |
V. V. Peller, S .V. Khrushchev, “Hankel operators of Schatten – von Neumann class $\boldsymbol{S}_p$ and their applications to stationary processes and best approximations”: N. K. Nikolskii, Treatise on the shift operator, Springer-Verlag, Berlin, 1986, 359-454 |
|
1985 |
94. |
V. V. Peller, “Hankel operators in the perturbation theory of unitary and self-adjoint operators”, Funct. Anal. Appl., 19:2 (1985), 111–123 |
|
1987 |
95. |
V. V. Peller, “A remark on interpolation in spaces of vector functions”, J. Soviet Math., 37:5 (1987), 1357–1358 |
|
1984 |
96. |
V. V. Peller, “Hankel Schur multipliers and multipliers of $H^1$”, Investigations on linear operators and function theory. Part XIII, Zap. Nauchn. Sem. LOMI, 135, “Nauka”, Leningrad. Otdel., Leningrad, 1984, 113–119 |
97. |
V.V. Peller, “Metricheskie svoistva usrednyayuschego proektora na mnozhestvo gankelevykh operatorov”, DAN SSSR, 278 (1984), 275-281 |
98. |
V. V. Peller, “Estimates of functions of a Hilbert space operator, similarity to a contraction, and related function algebras”, 199 problems of linear and complex analysis, Lect. Notes in Math., 1043, Springer - Verlag,, Berlin, 1984, 199 - 204 |
99. |
V. V. Peller, “Estimates of operator polynomials in the Schatten – von Neumann classes $\boldsymbol{S}_{p}$”, 199 problems in linear and complex analysis, Lect. Notes Math., 1043, Springer-Verlag, Berlin, 1984, 205-208 |
100. |
S. V. Khrushchev, V. V. Peller, “Moduli of Hankel operators, Past and Future”, 199 problems of real and complex analysis, Lect. Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 92-97 |
101. |
V. V. Peller, “Iterates of Toeplitz operators”, 199 problems of linear and complex analysis, Lect. Notes Math., 1043, Springer-Verlag, Berlin, 1984, 269-270 |
102. |
V. V. Peller, “Nuclear Hankel operators acting between Hardy classes”, Operator Theory, 14, Birkhäuser, Basel, 1984, 213-220 |
103. |
V. V. Peller, “Metric properties of an averaging projector onto the set of Hankel
matrices”, Dokl. Akad. Nauk SSSR, 278:2 (1984), 275–281 |
|
1985 |
104. |
V. V. Peller, “A description of Hankel operators of class $\mathfrak S_p$ for $p>0$, an investigation of the rate of rational approximation, and other applications”, Math. USSR-Sb., 50:2 (1985), 465–494 |
|
1983 |
105. |
V. V. Peller, “Invariant subspaces for Toeplitz operators”, Investigations on linear operators and function theory. Part XII, Zap. Nauchn. Sem. LOMI, 126, “Nauka”, Leningrad. Otdel., Leningrad, 1983, 170–179 |
106. |
V.V. Peller, “Continuity properties of the averaging projection onto the set of Hankel matrices”, J. Funct. Anal., 53 (1983), 64-73 |
|
1982 |
107. |
V. V. Peller, S. V. Khrushchev, “Hankel operators, best approximations, and stationary Gaussian processes”, Russian Math. Surveys, 37:1 (1982), 61–144 |
|
1987 |
108. |
V. V. Peller, “Rational approximation and smoothness of functions”, J. Soviet Math., 36:3 (1987), 391–398 |
|
1982 |
109. |
V.V. Peller, “Estimates of functions of power bounded operators on Hilbert space”, J. Oper. Theory, 7 (1982), 341-372 |
110. |
V.V. Peller, “Vectorial Hankel operators and related operators of the Schatten–von Neumann class ${\frak S}_{p}$”, Int. Equat. Oper. Theory, 5 (1982), 244-272
|
37
[x]
|
|
1983 |
111. |
V. V. Peller, “Analogue of J. von Neumann's inequality, isometric dilation of contractions and approximation by isometries in spaces of measurable functions”, Proc. Steklov Inst. Math., 155 (1983), 101–145 |
|
1982 |
112. |
V. V. Peller, “Hankel operators of class $\mathfrak S_p$ and their applications (rational approximation, Gaussian processes, the problem of majorizing operators)”, Math. USSR-Sb., 41:4 (1982), 443–479 |
|
1980 |
113. |
V. V. Peller, “Gladkie gankelevy operatory i ikh prilozheniya (idealy ${\frak S}_p$, klassy Besova, sluchainye protsessy)”, DAN SSSR, 252:1 (1980), 43–48
|
4
[x]
|
|
1979 |
114. |
V. V. Peller, “Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators”, Math. Notes, 25:6 (1979), 464–471 |
115. |
V. V. Peller, “Applications of ultraproducts in operator theory. A simple proof of E. Bishop's theorem”, Investigations on linear operators and function theory. Part IX, Zap. Nauchn. Sem. LOMI, 92, “Nauka”, Leningrad. Otdel., Leningrad, 1979, 230–240 |
|
1978 |
116. |
V. V. Peller, “Approximations by isometries and V. I. Matsaev's hypothesis for absolute contractions of the space $L^p$”, Funct. Anal. Appl., 12:1 (1978), 29–38 |
|
1984 |
117. |
V. V. Peller, “14.4. Estimation of operator polynomials in Schatten–von Neumann classes”, J. Soviet Math., 26:5 (1984), 2167–2168 |
|
1978 |
118. |
V.V. Peller, “L'inégalité de von Neumann, la dilatation isométrique et l'approximation par isométries dans $L^{p}$”, C.R. de l'Académie des Sciences de Paris, sér. A,, 278 (1978), 311-314 |
|
1981 |
119. |
V. V. Peller, “Estimates of operator polynomials on the space $L^p$ with respect to the multiplier norm”, J. Soviet Math., 16:3 (1981), 1139–1149 |
|
1976 |
120. |
V.V. Peller, “Analog neravenstva Dzh. fon Neimana dlya prostranstva $L^p$”, DAN SSSR, 231:3 (1976), 539–542
|
1
[x]
|
|