Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Treil, Sergei Raimondovich

Statistics
Total publications: 23
Scientific articles: 22

Number of views:
This page:3836
Abstract pages:8098
Full texts:3526
References:444
Professor
E-mail:
Website: https://vivo.brown.edu/display/streil, https://sites.google.com/a/brown.edu/sergei-treil-homepage/home

https://www.mathnet.ru/eng/person26042
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/232797

Publications in Math-Net.Ru Citations
2025
1. Alexander Pushnitskii, Sergei Treil, “Unbounded integral Hankel operators”, Funktsional. Anal. i Prilozhen., 59:3 (2025),  96–126  mathnet  mathscinet; Funct. Anal. Appl., 59:3 (2025), 297–320  isi  scopus
2022
2. C. Liaw, S. Treil, “Preservation of absolutely continuous spectrum for contractive operators”, Algebra i Analiz, 34:3 (2022),  232–251  mathnet; St. Petersburg Math. J., 34:3 (2023), 483–496 1
2014
3. S. Treil, “A remark on the reproducing kernel thesis for Hankel operators”, Algebra i Analiz, 26:3 (2014),  180–189  mathnet  mathscinet  elib; St. Petersburg Math. J., 26:3 (2015), 479–485  isi 2
2005
4. V. V. Peller, S. R. Treil, “Approximation by analytic operator functions. Factorizations and very badly approximable functions”, Algebra i Analiz, 17:3 (2005),  160–183  mathnet  mathscinet  zmath; St. Petersburg Math. J., 17:3 (2006), 493–510
2000
5. T. A. Gillespi, S. Pott, S. R. Treil', A. L. Vol'berg, “The transfer method in estimates for vector Hankel operators”, Algebra i Analiz, 12:6 (2000),  178–193  mathnet  mathscinet  zmath; St. Petersburg Math. J., 12:6 (2001), 1013–1024 7
1996
6. F. L. Nazarov, S. R. Treil', “The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis”, Algebra i Analiz, 8:5 (1996),  32–162  mathnet  mathscinet  zmath; St. Petersburg Math. J., 8:5 (1997), 721–824 177
1995
7. S. R. Treil, A. L. Volberg, “Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator”, Algebra i Analiz, 7:6 (1995),  205–226  mathnet  mathscinet  zmath; St. Petersburg Math. J., 7:6 (1996), 1017–1032 7
1990
8. S. R. Treil', “An inverse spectral problem for the modulus of the Hankel operator, and balanced realizations”, Algebra i Analiz, 2:2 (1990),  158–182  mathnet  mathscinet  zmath; Leningrad Math. J., 2:2 (1991), 353–375
1989
9. S. R. Treil', “Hankel operators, embedding theorems and bases of co-invariant subspaces of the multiple shift operator”, Algebra i Analiz, 1:6 (1989),  200–234  mathnet  mathscinet  zmath; Leningrad Math. J., 1:6 (1990), 1515–1548 4
10. V. I. Vasyunin, S. R. Treil', “The inverse spectral problem for the modulus of a Hankel operator”, Algebra i Analiz, 1:4 (1989),  54–66  mathnet  mathscinet  zmath; Leningrad Math. J., 1:4 (1990), 859–870
1988
11. S. R. Treil', “Angles between co-invariant subspaces, and the operator corona problem. The Szökefalvi-Nagy problem”, Dokl. Akad. Nauk SSSR, 302:5 (1988),  1063–1068  mathnet  mathscinet  zmath; Dokl. Math., 38:2 (1989), 394–399 2
1987
12. S. R. Treil', “Invertibility of a Toeplitz operator does not imply its invertibility by the projection method”, Dokl. Akad. Nauk SSSR, 292:3 (1987),  563–567  mathnet  mathscinet  zmath
13. S. R. Treil', “The resolvent of a Toeplitz operator may have arbitrary growth”, Zap. Nauchn. Sem. LOMI, 157 (1987),  175–177  mathnet 1
1986
14. S. R. Treil', “A spatially compact system of eigenvectors forms a Riesz basis if it is uniformly minimal”, Dokl. Akad. Nauk SSSR, 288:2 (1986),  308–312  mathnet  mathscinet  zmath 1
15. S. R. Treil', “Vector variant of the Adamyan–Arov–Krein theorem”, Funktsional. Anal. i Prilozhen., 20:1 (1986),  85–86  mathnet  mathscinet  zmath; Funct. Anal. Appl., 20:1 (1986), 74–76  isi 1
16. S. R. Treil', “Extreme points of the unit ball of the operator Hardy space $H^\infty(E\to E_*)$”, Zap. Nauchn. Sem. LOMI, 149 (1986),  160–164  mathnet  zmath
17. A. L. Vol'berg, S. R. Treil', “Imbedding theorems for invariant subspaces of backward shift operator.”, Zap. Nauchn. Sem. LOMI, 149 (1986),  38–51  mathnet  zmath 9
1985
18. S. R. Treil', “Moduli of Hankel operators and a problem of V.  V. Peller and S. V. Khrushchev”, Dokl. Akad. Nauk SSSR, 283:5 (1985),  1095–1099  mathnet  mathscinet  zmath
19. S. R. Treil, “The Adamyan–Arov–Krein theorem: Vectorial variant”, Zap. Nauchn. Sem. LOMI, 141 (1985),  56–71  mathnet  mathscinet  zmath; J. Soviet Math., 37:5 (1987), 1297–1306
20. S. R. Treil', “Moduli of Hankel operators and a problem of V. V. Peller and S. V. Khrushchev”, Zap. Nauchn. Sem. LOMI, 141 (1985),  39–55  mathnet  mathscinet  zmath; J. Soviet Math., 37:5 (1987), 1287–1269
1984
21. S. R. Treil', “An operator approach to weighted norm inequalities for singular inegrals”, Zap. Nauchn. Sem. LOMI, 135 (1984),  150–174  mathnet  mathscinet  zmath
1983
22. S. R. Treil, “A geometric approach to the weighted estimates of hilbert transforms”, Funktsional. Anal. i Prilozhen., 17:4 (1983),  90–91  mathnet  mathscinet  zmath; Funct. Anal. Appl., 17:4 (1983), 319–321  isi 1

1990
23. N. K. Nikol'skii, V. A. Tolokonnikov, S. R. Treil', “A. Böttcher, B. Silbermann. Analysis of Toeplitz Operators. Berlin: Akademie, 1989”, Algebra i Analiz, 2:5 (1990),  220–235  mathnet  mathscinet  zmath 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026