Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Lazarev, Nyurgun Petrovich

Main Scientist Researcher
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person26580
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/710358
https://orcid.org/0000-0002-7726-6742

Publications in Math-Net.Ru Citations
2025
1. A. A. Zarovnyaev, N. P. Lazarev, “Equilibrium problem for a Timoshenko plate with a cohesion of the edges of a defect on the front surface”, Chelyab. Fiz.-Mat. Zh., 10:3 (2025),  417–430  mathnet
2. N. P. Lazarev, “Optimal control of transverse crack length in the equilibrium problem of Timoshenko plate with two intersecting cracks”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:2 (2025),  247–260  mathnet
2024
3. N. P. Lazarev, D. Ya. Nikiforov, N. A. Romanova, “Equilibrium problem for a Timoshenko plate contacting by its lateral surface along a strip of a given width”, Chelyab. Fiz.-Mat. Zh., 9:4 (2024),  596–608  mathnet
4. Nyurgun P. Lazarev, Evgeny M. Rudoy, Djulustan Ya. Nikiforov, “Equilibrium problem for a Kirchhoff–Love plate contacting by the side edge and the bottom boundary”, J. Sib. Fed. Univ. Math. Phys., 17:3 (2024),  355–364  mathnet
5. N. P. Lazarev, D. Y. Nikiforov, G. M. Semenova, “Equilibrium problem for a Kirchhoff-Love plate contacting with the lateral surface along a strip of a given width”, Sib. Èlektron. Mat. Izv., 21:2 (2024),  729–740  mathnet
2023
6. N. P. Lazarev, D. Ya. Nikiforov, N. A. Romanova, “Equilibrium problem for a Timoshenko plate contacting by the side and face surfaces”, Chelyab. Fiz.-Mat. Zh., 8:4 (2023),  528–541  mathnet 3
7. Nyurgun P. Lazarev, Galina M. Semenova, “Optimal location problem for composite bodies with separate and joined rigid inclusions”, Bulletin of Irkutsk State University. Series Mathematics, 43 (2023),  19–30  mathnet
8. N. P. Lazarev, G. M. Semenova, E. S. Efimova, “Optimal control of external loads in the equilibrium problem for a composite body contacting with a rigid inclusion with a sharp edge”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 230 (2023),  88–95  mathnet
9. N. P. Lazarev, V. A. Kovtunenko, “Problem of the equilibrium of a two-dimensional elastic body with two contacting thin rigid inclusions”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 227 (2023),  51–60  mathnet
10. N. P. Lazarev, V. A. Kovtunenko, “Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths”, Prikl. Mekh. Tekh. Fiz., 64:5 (2023),  205–215  mathnet  elib; J. Appl. Mech. Tech. Phys., 64:5 (2024), 911–920 10
11. N. P. Lazarev, N. A. Romanova, “Optimal control of the angle between two rigid inclusions in an inhomogeneous 2D body”, Mathematical notes of NEFU, 30:3 (2023),  38–57  mathnet
2022
12. N. P. Lazarev, E. D. Fedotov, “Three-dimensional Signorini-type problem for composite bodies contacting with sharp edges of rigid inclusions”, Chelyab. Fiz.-Mat. Zh., 7:4 (2022),  412–423  mathnet 3
13. N. P. Lazarev, E. F. Sharin, G. M. Semenova, E. D. Fedotov, “Optimal location and shape of a rigid inclusion in a contact problem for inhomogeneous two-dimensional body”, Sib. Èlektron. Mat. Izv., 19:2 (2022),  627–638  mathnet  mathscinet
14. V. V. Naumov, I. I. Shamaev, S. V. Mestnikov, N. P. Lazarev, “Maximizing gross product for the macroeconomic system with consumption proportional to labor resources”, Sib. Zh. Ind. Mat., 25:2 (2022),  46–57  mathnet; J. Appl. Industr. Math., 16:2 (2022), 292–301
15. N. P. Lazarev, “Solvability of an equilibrium problem for a thermoelastic Kirchhoff-Love plate with an oblique crack”, Mathematical notes of NEFU, 29:2 (2022),  31–42  mathnet
2021
16. N. P. Lazarev, E. F. Sharin, G. M. Semenova, “Optimal control of the location of the hinge point of rigid inclusions in an equilibrium problem of a Timoshenko plate”, Chelyab. Fiz.-Mat. Zh., 6:3 (2021),  278–288  mathnet
17. Nyurgun P. Lazarev, Galina M. Semenova, Natalya A. Romanova, “On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  28–41  mathnet  isi 13
18. E. M. Rudoy, H. Itou, N. P. Lazarev, “Asymptotic justification of the models of thin inclusions in an elastic body in the antiplane shear problem”, Sib. Zh. Ind. Mat., 24:1 (2021),  103–119  mathnet  elib; J. Appl. Industr. Math., 15:1 (2021), 129–140  scopus 15
19. N. V. Neustroeva, N. P. Lazarev, “Optimal control of the crack angle in the equilibrium problem for a Timoshenko plate with elastic inclusion”, Mathematical notes of NEFU, 28:4 (2021),  58–70  mathnet 1
20. N. P. Lazarev, E. F. Sharin, G. M. Semenova, “Optimal location of a rigid inclusion for an equilibrium problem describing Kirchhoff–Love plate with nonpenetration conditions for known configurations of plate edges”, Mathematical notes of NEFU, 28:2 (2021),  16–33  mathnet  elib
2020
21. N. P. Lazarev, “Equilibrium problem for an thermoelastic Kirchhoff–Love plate with a nonpenetration condition for known configurations of crack edges”, Sib. Èlektron. Mat. Izv., 17 (2020),  2096–2104  mathnet  isi 3
22. N. P. Lazarev, G. M. Semenova, “Equilibrium problem for a Timoshenko plate with a geometrically nonlinear condition of nonpenetration for a vertical crack”, Sib. Zh. Ind. Mat., 23:3 (2020),  65–76  mathnet  elib; J. Appl. Industr. Math., 14:3 (2020), 532–540  scopus 6
23. N. P. Lazarev, H. Itou, “Equilibrium problems for Kirchhoff–Love plates with nonpenetration conditions for known configurations of crack edges”, Mathematical notes of NEFU, 27:3 (2020),  52–65  mathnet  elib
2019
24. Nyurgun P. Lazarev, Vladimir V. Everstov, Natalya A. Romanova, “Fictitious domain method for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, J. Sib. Fed. Univ. Math. Phys., 12:6 (2019),  674–686  mathnet  isi 12
25. N. P. Lazarev, G. M. Semenova, “Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack”, Sib. Zh. Ind. Mat., 22:1 (2019),  53–62  mathnet  elib; J. Appl. Industr. Math., 13:1 (2019), 76–84  scopus 2
26. N. P. Lazarev, M. P. Grigoryev, “Differentiation of the energy functionals for equilibrium problems of the Kirchhoff–Love plates with nonpenetration conditions for known configurations of plate edges”, Mathematical notes of NEFU, 26:4 (2019),  51–62  mathnet  elib
27. N. P. Lazarev, A. Tani, P. Sivtsev, “Optimal radius of a rigid cylindrical inclusion in nonhomogeneous plates with a crack”, Mathematical notes of NEFU, 26:1 (2019),  46–58  mathnet  elib
2018
28. N. P. Lazarev, S. Das, M. P. Grigoryev, “Optimal control of a thin rigid stiffener for a model describing equilibrium of a Timoshenko plate with a crack”, Sib. Èlektron. Mat. Izv., 15 (2018),  1485–1497  mathnet 3
29. N. P. Lazarev, E. M. Rudoy, T. S. Popova, “Optimal control of the length of a straight crack for a model describing an equilibrium of a two-dimensional body with two intersecting cracks”, Mathematical notes of NEFU, 25:3 (2018),  43–53  mathnet  elib
30. N. P. Lazarev, I. Hiromichi, P. V. Sivtsev, I. M. Tikhonova, “On the solution regularity of an equilibrium problem for the Timoshenko plate having an inclined crack”, Mathematical notes of NEFU, 25:1 (2018),  38–49  mathnet  elib 1
2017
31. N. V. Neustroeva, N. P. Lazarev, “The derivative of the energy functional in an equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, Sib. Zh. Ind. Mat., 20:2 (2017),  59–70  mathnet  elib; J. Appl. Industr. Math., 11:2 (2017), 252–262  scopus 4
32. N. P. Lazarev, V. V. Èverstov, “An optimal size of an external rigid thin inclusion for a nonlinear problem describing equilibrium of a three-dimensional cracked cylindrical body”, Mathematical notes of NEFU, 24:4 (2017),  37–51  mathnet  elib
2016
33. N. V. Neustroeva, N. P. Lazarev, “Junction problem for Euler–Bernoulli and Timoshenko elastic beams”, Sib. Èlektron. Mat. Izv., 13 (2016),  26–37  mathnet 5
34. N. P. Lazarev, “Optimal size control of a rigid inclusion in equilibrium problems for inhomogeneous three-dimensional bodies with a crack”, Mathematical notes of NEFU, 23:2 (2016),  51–64  mathnet  elib
35. N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, Sib. J. Pure and Appl. Math., 16:1 (2016),  90–105  mathnet; J. Math. Sci., 228:4 (2018), 409–420 1
2015
36. N. P. Lazarev, “Energy functional derivative of the length of a curvilinear oblique cut in the problem of equilibrium of a Timoshenko plate”, Prikl. Mekh. Tekh. Fiz., 56:6 (2015),  119–131  mathnet  elib; J. Appl. Mech. Tech. Phys., 56:6 (2015), 1038–1048 1
37. N. P. Lazarev, N. V. Neustroeva, N. A. Nikolaeva, “Optimal control of tilt angles in equilibrium problems for the Timoshenko plate with a oblique crack”, Sib. Èlektron. Mat. Izv., 12 (2015),  300–308  mathnet 4
2014
38. N. P. Lazarev, “The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1,  32–45  mathnet 8
2013
39. Nyurgun P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013),  53–62  mathnet 9
40. N. P. Lazarev, “Equilibrium problem for a Timoshenko plate with an oblique crack”, Prikl. Mekh. Tekh. Fiz., 54:4 (2013),  171–181  mathnet  elib; J. Appl. Mech. Tech. Phys., 54:4 (2013), 662–671 4
41. N. P. Lazarev, “Problem of equilibrium of the Timoshenko plate containing a crack on the boundary of an elastic inclusion with an infinite shear rigidity”, Prikl. Mekh. Tekh. Fiz., 54:2 (2013),  179–189  mathnet  elib; J. Appl. Mech. Tech. Phys., 54:2 (2013), 322–330 8
42. N. P. Lazarev, “The Griffith formula for a Timoshenko-type plate with a curvilinear track”, Sib. Zh. Ind. Mat., 16:2 (2013),  98–108  mathnet  mathscinet 9
43. N. P. Lazarev, “Fictitious domain method in the equilibrium problem for a Timoshenko-type plate contacting with a rigid obstacle”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013),  91–104  mathnet; J. Math. Sci., 203:4 (2014), 527–539 15
44. N. P. Lazarev, “Invariant integrals in equilibrium problem for a Timoshenko type plate with the Signorini type condition on the crack”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 6(107),  100–115  mathnet
2012
45. N. P. Lazarev, “Differentiation of the energy functional in the equilibrium problem for a Timoshenko plate containing a crack”, Prikl. Mekh. Tekh. Fiz., 53:2 (2012),  175–185  mathnet  elib; J. Appl. Mech. Tech. Phys., 53:2 (2012), 299–307 5
46. N. P. Lazarev, “The problem of equilibrium of a shallow Timoshenko-type shell containing a through-thickness crack”, Sib. Zh. Ind. Mat., 15:3 (2012),  58–69  mathnet  mathscinet; J. Appl. Industr. Math., 7:1 (2013), 78–88 10
2011
47. N. P. Lazarev, “An equilibrium problem for a Timoshenko plate with a through crack”, Sib. Zh. Ind. Mat., 14:4 (2011),  32–43  mathnet  mathscinet 10
48. N. P. Lazarev, “An iterative penalty method for a nonlinear problem of equilibrium of a Timoshenko-type plate with a crack”, Sib. Zh. Vychisl. Mat., 14:4 (2011),  397–408  mathnet; Num. Anal. Appl., 4:4 (2011), 309–318  scopus 16
49. N. P. Lazarev, “Extreme Crack Shapes in a Plate Timoshenko Model”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011),  49–62  mathnet; J. Math. Sci., 195:6 (2013), 815–826 4
50. N. P. Lazarev, T. S. Popova, “Variational Equilibrium Problem for a Plate with a Vertical Crack with a Geometrically Nonlinear Nonpenetration Condition”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:2 (2011),  77–88  mathnet; J. Math. Sci., 188:4 (2013), 398–409 7
2003
51. N. P. Lazarev, “The method of smooth domains in problems of the two-dimensional theory of elasticity for a domain with a nonsmooth cut”, Sib. Zh. Ind. Mat., 6:3 (2003),  103–113  mathnet  mathscinet  zmath
2002
52. N. P. Lazarev, “Differentiation of the energy functional for the problem of the equilibrium of a body containing a crack, with Signorini boundary conditions”, Sib. Zh. Ind. Mat., 5:2 (2002),  139–147  mathnet  mathscinet  zmath 3
1991
53. N. P. Lazarev, M. P. Fateev, “Diffusion in a lattice with static disorder”, TMF, 89:3 (1991),  465–472  mathnet; Theoret. and Math. Phys., 89:3 (1991), 1342–1347  isi 2

Presentations in Math-Net.Ru
1. Оптимальное управление углом наклона препятствия в контактной задаче для пластины Тимошенко
N. P. Lazarev
The Sixth International Conference "Supercomputer Technologies of Mathematical Modelling" (SCTeMM'25)
July 17, 2025 15:10
2. Signorini-type problems for 2D composite bodies contacting by sharp edges of rigid inclusions
N. P. Lazarev
The Fifth International Conference "Supercomputer Technologies of Mathematical Modelling"
June 30, 2022 11:20

Organisations