|
|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
| 1. |
B. S. Bardin, A. A. Rachkov, E. A. Chekina, A. M. Chekin, “On periodic modes of body motion along a horizontal rough plane, performed by moving two internal masses”, Computer Research and Modeling, 16:1 (2024), 17–34 |
| 2. |
B. S. Bardin, A. A. Savin, “On the orbital stability of pendulum motions of a rigid body in the Hess case”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 66–70 ; Dokl. Math., 109:1 (2024), 52–55 |
| 3. |
B. S. Bardin, “On the Orbital Stability of Periodic Motions of a Heavy Rigid Body in the Bobylev – Steklov Case”, Rus. J. Nonlin. Dyn., 20:1 (2024), 127–140 |
|
2023 |
| 4. |
B. S. Bardin, E. A. Sukhov, E. V. Volkov, “Nonlinear Orbital Stability of Periodic Motions
in the Planar Restricted Four-Body Problem”, Rus. J. Nonlin. Dyn., 19:4 (2023), 545–557 |
| 5. |
Boris S. Bardin, “On the Method of Introduction of Local Variables in a Neighborhood of Periodic Solution of a Hamiltonian System with Two Degrees of Freedom”, Regul. Chaotic Dyn., 28:6 (2023), 878–887 |
2
|
|
2022 |
| 6. |
B. S. Bardin, E. A. Chekina, A. M. Chekin, “On the Orbital Stability of Pendulum Oscillations
of a Dynamically Symmetric Satellite”, Rus. J. Nonlin. Dyn., 18:4 (2022), 589–607 |
1
|
| 7. |
B. S. Bardin, A. N. Avdyushkin, “On Stability of the Collinear Libration Point $L_1$
in the Planar Restricted Circular Photogravitational
Three-Body Problem”, Rus. J. Nonlin. Dyn., 18:4 (2022), 543–562 |
|
2021 |
| 8. |
B. S. Bardin, E. A. Chekina, “On the Orbital Stability of Pendulum-like Oscillations
of a Heavy Rigid Body with a Fixed Point in the
Bobylev – Steklov Case”, Rus. J. Nonlin. Dyn., 17:4 (2021), 453–464 |
2
|
|
2020 |
| 9. |
B. S. Bardin, “On a Method of Introducing Local Coordinates in the Problem of the Orbital Stability of Planar Periodic Motions of a Rigid Body”, Rus. J. Nonlin. Dyn., 16:4 (2020), 581–594 |
2
|
| 10. |
Boris S. Bardin, Víctor Lanchares, “Stability of a One-degree-of-freedom Canonical System in the Case of Zero Quadratic and Cubic Part of a Hamiltonian”, Regul. Chaotic Dyn., 25:3 (2020), 237–249 |
|
2019 |
| 11. |
B. S. Bardin, A. S. Panev, “On translational rectilinear motion of a solid body carrying a movable inner mass”, CMFD, 65:4 (2019), 557–592 |
1
|
| 12. |
B. S. Bardin, E. A. Chekina, “On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions”, Rus. J. Nonlin. Dyn., 15:4 (2019), 415–428 |
| 13. |
Boris S. Bardin, Evgeniya A. Chekina, “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance”, Regul. Chaotic Dyn., 24:2 (2019), 127–144 |
9
|
|
2017 |
| 14. |
B. S. Bardin, E. A. Chekina, “On the stability of planar oscillations of a satellite-plate in the case of essential type resonance”, Nelin. Dinam., 13:4 (2017), 465–476 |
5
|
| 15. |
Boris S. Bardin, Evgeniya A. Chekina, “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Second-order Resonance Case”, Regul. Chaotic Dyn., 22:7 (2017), 808–823 |
8
|
|
2016 |
| 16. |
B. S. Bardin, E. A. Chekina, “On the stability of a resonant rotation of a satellite in an elliptic orbit”, Nelin. Dinam., 12:4 (2016), 619–632 |
3
|
| 17. |
Boris S. Bardin, Evgeniya A. Chekina, “On the Stability of Resonant Rotation of a Symmetric Satellite in an Elliptical Orbit”, Regul. Chaotic Dyn., 21:4 (2016), 377–389 |
15
|
|
2015 |
| 18. |
Boris S. Bardin, Victor Lanchares, “On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy”, Regul. Chaotic Dyn., 20:6 (2015), 627–648 |
7
|
| 19. |
Boris S. Bardin, Evgeniya A. Chekina, Alexander M. Chekin, “On the Stability of a Planar Resonant Rotation of a Satellite in an Elliptic Orbit”, Regul. Chaotic Dyn., 20:1 (2015), 63–73 |
22
|
|
2012 |
| 20. |
B. S. Bardin, A. A. Savin, “On orbital stability pendulum-like oscillations and rotation of symmetric rigid body with a fixed point”, Nelin. Dinam., 8:2 (2012), 249–266 |
| 21. |
B. S. Bardin, T. V. Rudenko, A. A. Savin, “On the Orbital Stability of Planar Periodic Motions of a Rigid Body in the Bobylev–Steklov Case”, Regul. Chaotic Dyn., 17:6 (2012), 533–546 |
18
|
| 22. |
Boris S. Bardin, Alexander A. Savin, “On the Orbital Stability of Pendulum-like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3-4 (2012), 243–257 |
21
|
|
2010 |
| 23. |
B. S. Bardin, “On the orbital stability of pendulum-like motions of a rigid body in the Bobylev–Steklov case”, Regul. Chaotic Dyn., 15:6 (2010), 704–716 |
16
|
|
2009 |
| 24. |
B. S. Bardin, “On stability orbital stability of pendulum like motions of a rigid body in the Bobylev–Steklov case”, Nelin. Dinam., 5:4 (2009), 535–550 |
2
|
|
2007 |
| 25. |
B. S. Bardin, “On nonlinear oscillations of Hamiltonian system in case of fourth order resonance”, Nelin. Dinam., 3:1 (2007), 57–74 |
2
|
| 26. |
B. S. Bardin, “On Nonlinear Motions of Hamiltonian System in Case of Fourth Order Resonance”, Regul. Chaotic Dyn., 12:1 (2007), 86–100 |
8
|
|
2005 |
| 27. |
B. S. Bardin, A. J. Maciejewski, M. Przybylska, “Integrability of generalized Jacobi problem”, Regul. Chaotic Dyn., 10:4 (2005), 437–461 |
5
|
|
2000 |
| 28. |
B. S. Bardin, A. J. Maciejewski, “Non-linear Oscillations of a Hamiltonian System with One and Half Degrees of Freedom”, Regul. Chaotic Dyn., 5:3 (2000), 345–360 |
|
|
|
2018 |
| 29. |
Bardin B. S., Panev A. S., “On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane”, Nelin. Dinam., 14:4 (2018), 519–542 |
4
|
|
| Presentations in Math-Net.Ru |
| 1. |
On orbital stability of periodic solutions of Hamiltonian system with two degrees of freedom in resonant cases of degeneration B. S. Bardin, B. A. Maksimov
Regular and Chaotic Dynamics. On the 30th Anniversary of the Journal Regular and Chaotic Dynamics October 28, 2025 13:20
|
| 2. |
О трансцендентном случае в задаче об орбитальной устойчивости периодических движений тяжелого твердого тела с одной неподвижной точкой B. S. Bardin
Scientific seminar on the differential and functional differential equations April 8, 2025 12:00
|
| 3. |
On the orbital stability of periodic motions of a heavy solid in the Bobylev–Steklov case B. S. Bardin
Scientific seminar on the differential and functional differential equations February 13, 2024 12:00
|
| 4. |
On local coordinates in the problem of orbital stability of periodic motions in classical and celestial mechanics B. S. Bardin
Scientific seminar on the differential and functional differential equations April 5, 2022 12:00
|
| 5. |
Применение алгоритма Ковачича для исследования движения тяжелого твердого тела с неподвижной точкой в случае Гесса B. S. Bardin, A. S. Kuleshov
Differential geometry and applications November 9, 2020 17:45
|
| 6. |
Особые и вырожденные случаи в задаче устойчивости. Приложения в классической механике и динамике спутников. Современные подходы, методы, алгоритмы. B. S. Bardin
International School of Young Mechanics and Mathematicians "Modern nonlinear dynamics" November 8, 2019 11:45
|
| 7. |
The montion body with an internal moving point mass on a horizontal plane B. S. Bardin, A. S. Panev
International Conference on Mathematical Control Theory and Mechanics July 4, 2015 16:50
|
| 8. |
Investigation of the stability of a flat rotary motion of the satellite in an elliptical orbit B. S. Bardin, E. A. Chekina
International Conference on Mathematical Control Theory and Mechanics July 4, 2015 10:40
|
|
|
| Organisations |
|
|