Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Popa, Valeriu

E-mail:

https://www.mathnet.ru/eng/person45976
List of publications on Google Scholar
https://zbmath.org/authors/ai:popa.valeriu.1
https://mathscinet.ams.org/mathscinet/MRAuthorID/838192

Publications in Math-Net.Ru Citations
2024
1. Valeriu Popa, “On LCA groups with local ring of continuous endomorphisms”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2024, no. 3,  103–119  mathnet
2017
2. Valeriu Popa, “On LCA groups whose ring of continuous endomorphisms satisfies $DCC$ on closed ideals”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2017, no. 2,  88–111  mathnet  mathscinet 1
2015
3. Valeriu Popa, “On LCA groups with locally compact rings of continuous endomorphisms. II”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2015, no. 2,  96–113  mathnet
2014
4. Valeriu Popa, “On LCA groups with locally compact rings of continuous endomorphisms. I”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 3,  65–79  mathnet 1
2011
5. Valeriu Popa, “On LCA groups whose rings of continuous endomorphisms have at most two non-trivial closed ideals. I”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011, no. 3,  91–107  mathnet  mathscinet  zmath 1
2010
6. Valeriu Popa, “Topological rings with at most two nontrivial closed ideals”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2010, no. 3,  77–93  mathnet  mathscinet  zmath 1
2007
7. Valeriu Popa, “On mixed LCA groups with commutative rings of continuous endomorphisms”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, no. 3,  73–90  mathnet  mathscinet  zmath
8. Valeriu Popa, “On torsionfree LCA groups with commutative rings of continuous endomorphisms”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, no. 2,  81–100  mathnet  mathscinet  zmath 1
9. Valeriu Popa, “On LCA groups in which some closed subgroups have commutative rings of continuous endomorphisms”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2007, no. 1,  83–94  mathnet  mathscinet  zmath 2
2006
10. Valeriu Popa, “On topological torsion LCA groups with commutative ring of continuous endomorphisms”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 3,  87–100  mathnet  mathscinet  zmath 3

Organisations