|
|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
| 1. |
G. A. Mikhailov, G. Z. Lotova, S. V. Rogazinskii, “Study of the bias of $N$-particle estimates of the Monte Carlo method in problems with particle interaction”, Dokl. RAN. Math. Inf. Proc. Upr., 519 (2024), 33–38 ; Dokl. Math., 110:2 (2024), 416–420 |
| 2. |
G. A. Michailov, G. Z. Lotova, I. N. Medvedev, “Efficiently realized approximate models of random functions in stochastic problems of the theory of particle transfer”, Sib. Zh. Vychisl. Mat., 27:2 (2024), 189–209 ; Num. Anal. Appl., 17:2 (2024), 152–168 |
| 3. |
G. Z. Lotova, G. A. Mikhailov, S. A. Rozhenko, “Optimization of a numerical-statistical algorithm for estimating the mean particle flow in a bounded random medium with multiplication”, Zh. Vychisl. Mat. Mat. Fiz., 64:11 (2024), 2194–2204 ; Comput. Math. Math. Phys., 64:11 (2024), 2705–2715 |
| 4. |
G. Z. Lotova, G. A. Mikhailov, S. V. Rogazinskii, “Study and optimization of $N$-particle numerical statistical algorithm for solving the Boltzmann equation”, Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024), 842–851 ; Comput. Math. Math. Phys., 64:5 (2024), 1065–1075 |
|
2023 |
| 5. |
G. A. Mikhailov, G. Z. Lotova, “Numerical-statistical investigation of superexponential growth of the mean particle flux with multiplication in a homogeneous random medium”, Dokl. RAN. Math. Inf. Proc. Upr., 514:1 (2023), 112–117 ; Dokl. Math., 108:3 (2023), 519–523 |
| 6. |
G. Z. Lotova, G. A. Michailov, “Investigation of the overexponential growth of the mean particles flux with multiplication in a random medium”, Sib. Zh. Vychisl. Mat., 26:4 (2023), 401–413 ; Num. Anal. Appl., 16:4 (2023), 337–347 |
4
|
| 7. |
G. Z. Lotova, G. A. Michailov, “Study of superexponential growth of the mean partile flux by Monte Carlo method”, Sib. Zh. Vychisl. Mat., 26:3 (2023), 277–285 ; Num. Anal. Appl., 16:3 (2023), 229–235 |
|
2021 |
| 8. |
G. Z. Lotova, G. A. Mikhailov, “Numerical-statistical and analytical study of asymptotics for the average multiplication particle flow in a random medium”, Zh. Vychisl. Mat. Mat. Fiz., 61:8 (2021), 1353–1362 ; Comput. Math. Math. Phys., 61:8 (2021), 1330–1338 |
6
|
|
2020 |
| 9. |
G. A. Mikhailov, G. Z. Lotova, “Monte Carlo algorithms for estimating time asymptotics of multiplication particle flow in a random medium”, Dokl. RAN. Math. Inf. Proc. Upr., 490 (2020), 47–50 ; Dokl. Math., 101:1 (2020), 40–42 |
3
|
|
2018 |
| 10. |
G. A. Mikhailov, G. Z. Lotova, “Monte Carlo methods for estimating the probability distributions of criticality parameters of particle transport in a randomly perturbed medium”, Zh. Vychisl. Mat. Mat. Fiz., 58:11 (2018), 1900–1910 ; Comput. Math. Math. Phys., 58:11 (2018), 1828–1837 |
2
|
|
2015 |
| 11. |
G. Z. Lotova, G. A. Mikhailov, “Investigation and improvement of biased Monte-Carlo estimates”, Zh. Vychisl. Mat. Mat. Fiz., 55:1 (2015), 10–21 ; Comput. Math. Math. Phys., 55:1 (2015), 8–18 |
2
|
|
2008 |
| 12. |
G. Z. Lotova, G. A. Mikhailov, “Moments of the critical parameters of the transport of particles in a random medium”, Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008), 2225–2236 ; Comput. Math. Math. Phys., 48:12 (2008), 2254–2265 |
6
|
|
2002 |
| 13. |
G. Z. Lotova, G. A. Mikhailov, “New Monte Carlo methods for estimating time dependences in radiative transfer processes”, Zh. Vychisl. Mat. Mat. Fiz., 42:4 (2002), 569–579 ; Comput. Math. Math. Phys., 42:4 (2002), 544–554 |
12
|
|
| Organisations |
|
|