Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Mel'nikova, Alina Aleksandrovna

Candidate of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person76606
List of publications on Google Scholar

Publications in Math-Net.Ru Citations
2019
1. D. V. Lukyanenko, A. A. Mel'nikova, “Application of asymptotic analysis methods for solving a coefficient inverse problem for a system of nonlinear singularly perturbed reaction-diffusion equations with cubic nonlinearity”, Num. Meth. Prog., 20:4 (2019),  363–377  mathnet 2
2. A. A. Mel'nikova, “Existence and stability of a front-type periodic solution of a two-component system of parabolic equations”, Zh. Vychisl. Mat. Mat. Fiz., 59:7 (2019),  1184–1200  mathnet  elib; Comput. Math. Math. Phys., 59:7 (2019), 1131–1147  isi  scopus 8
2018
3. A. A. Melnikova, N. N. Deryugina, “Periodic variations of an autowave structure in two-dimensional system of parabolic equations”, Model. Anal. Inform. Sist., 25:1 (2018),  112–124  mathnet  elib 2
4. A. E. Sidorova, N. T. Levashova, A. E. Semina, A. A. Melnikova, “The application of a distributed model of active media for the analysis of urban ecosystems development”, Mat. Biolog. Bioinform., 13:2 (2018),  454–465  mathnet 10
5. A. A. Melnikova, M. Chen, “Existence and asymptotic representation of the autowave solution of a system of equations”, Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  705–715  mathnet  elib; Comput. Math. Math. Phys., 58:5 (2018), 680–690  isi  scopus 2
2017
6. A. E. Sidorova, N. T. Levashova, A. A. Melnikova, A. E. Semina, “The model of structurization of urban ecosystems as the process of self-organization in active media”, Mat. Biolog. Bioinform., 12:1 (2017),  186–197  mathnet 7
7. N. T. Levashova, A. A. Melnikova, D. V. Luk'yanenko, A. E. Sidorova, S. V. Bytsura, “Modeling of ecosystems as a process of self-organization”, Mat. Model., 29:11 (2017),  40–52  mathnet  elib 2
2016
8. A. A. Mel'nikova, R. L. Argun, “Asymptotic approximation of the stationary solution with internal layer for FitzHugh–Nagumo system”, Model. Anal. Inform. Sist., 23:5 (2016),  559–567  mathnet  mathscinet  elib 1
9. N. T. Levashova, A. A. Mel'nikova, S. V. Bytsyura, “The application of the differential inequalities method for proving the existence of moving front solution of the parabolic equations system”, Model. Anal. Inform. Sist., 23:3 (2016),  317–325  mathnet  mathscinet  elib 2
2013
10. V. F. Butuzov, N. T. Levashova, A. A. Mel'nikova, “A steplike contrast structure in a singularly perturbed system of elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013),  1427–1447  mathnet  elib; Comput. Math. Math. Phys., 53:9 (2013), 1239–1259  isi  elib  scopus 19
2012
11. V. F. Butuzov, N. T. Levashova, A. A. Mel'nikova, “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012),  1983–2003  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:11 (2012), 1526–1546  isi  elib  scopus 26

Organisations