|
This article is cited in 5 scientific papers (total in 5 papers)
Electronic properties of semiconductors
Analysis of the optical properties of plastically deformed ZnS(O) using band-anticrossing theory
N. K. Morozovaa, I. N. Miroshnikovaab, V. G. Galstyanc a National Research University "Moscow Power Engineering Institute"
b Institute of Nanotechnologies of Microelectronics, Russian Academy of Sciences
c FSRC "Crystallography and Photonics" RAS
Abstract:
The cathodoluminescence and absorption of plastically deformed ZnS(O) single crystals are investigated in the light of band-anticrossing theory. The difference in the oxygen content in the surface layer and in the sample bulk is found using a scanning electron microscope and according to cathodoluminescence data. This fact explains the specifics of the spectral position of the fundamental absorption edge and exciton spectra. The shift dynamics of the bands of self-activated luminescence on deep A centers (SA luminescence) during deformation recrystallization with an increase in the dissolved oxygen concentration is presented. Restriction of the spectral range of the appearance of self-activated luminescence at shallow levels–“edge” luminescence–is established. The nature of the emission bands in the wavelength ranges of 336–350 and 364–390 nm is established. These results refine the energy model of ZnS(O) crystals and can be useful in the case of the practical use of their structure-sensitive properties.
Received: 02.07.2018 Revised: 25.12.2018 Accepted: 28.12.2018
Citation:
N. K. Morozova, I. N. Miroshnikova, V. G. Galstyan, “Analysis of the optical properties of plastically deformed ZnS(O) using band-anticrossing theory”, Fizika i Tekhnika Poluprovodnikov, 53:6 (2019), 793–798; Semiconductors, 53:6 (2019), 784–788
Linking options:
https://www.mathnet.ru/eng/phts5485 https://www.mathnet.ru/eng/phts/v53/i6/p793
|
|