Fizika i Tekhnika Poluprovodnikov
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fizika i Tekhnika Poluprovodnikov:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fizika i Tekhnika Poluprovodnikov, 2015, Volume 49, Issue 11, Pages 1531–1539 (Mi phts7441)  

This article is cited in 1 scientific paper (total in 1 paper)

Semiconductor structures, low-dimensional systems, quantum phenomena

Temperature quenching of spontaneous emission in tunnel-injection nanostructures

V. G. Talalaevab, B. V. Novikova, G. È. Cirlincd, H. S. Leipnere

a V. A. Fock Institute of Physics, Saint-Petersburg State University
b Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
c St. Petersburg Academic University — Nanotechnology Research and Education Centre of the Russian Academy of Sciences (the Academic University)
d Institute for Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg
e Martin Luther University Halle-Wittenberg, Interdisciplinary Center of Materials Science, 06120 Halle, Germany
Full-text PDF (466 kB) Citations (1)
Abstract: The spontaneous-emission spectra in the near-IR range (0.8–1.3 $\mu$m) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in $p$$n$ junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier ($<$ 6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor $S_\mathrm{T}$ of the integrated intensity $I$ is $S_\mathrm{T}=I_5/I_{295}\approx3$. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.
Received: 13.04.2015
Accepted: 20.04.2015
English version:
Semiconductors, 2015, Volume 49, Issue 12, Pages 1483–1492
DOI: https://doi.org/10.1134/S1063782615110214
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. G. Talalaev, B. V. Novikov, G. È. Cirlin, H. S. Leipner, “Temperature quenching of spontaneous emission in tunnel-injection nanostructures”, Fizika i Tekhnika Poluprovodnikov, 49:11 (2015), 1531–1539; Semiconductors, 49:12 (2015), 1483–1492
Citation in format AMSBIB
\Bibitem{TalNovCir15}
\by V.~G.~Talalaev, B.~V.~Novikov, G.~\`E.~Cirlin, H.~S.~Leipner
\paper Temperature quenching of spontaneous emission in tunnel-injection nanostructures
\jour Fizika i Tekhnika Poluprovodnikov
\yr 2015
\vol 49
\issue 11
\pages 1531--1539
\mathnet{http://mi.mathnet.ru/phts7441}
\elib{https://elibrary.ru/item.asp?id=24195333}
\transl
\jour Semiconductors
\yr 2015
\vol 49
\issue 12
\pages 1483--1492
\crossref{https://doi.org/10.1134/S1063782615110214}
Linking options:
  • https://www.mathnet.ru/eng/phts7441
  • https://www.mathnet.ru/eng/phts/v49/i11/p1531
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Fizika i Tekhnika Poluprovodnikov Fizika i Tekhnika Poluprovodnikov
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025