Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2024, Volume 215, Issue 9, Pages 1202–1223
DOI: https://doi.org/10.4213/sm10013e
(Mi sm10013)
 

This article is cited in 2 scientific papers (total in 2 papers)

Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials

R. M. Gadzhimirzaev

Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala, Russia
References:
Abstract: We study approximations of a function $f\in W^r_{l^2_{\omega}(\Omega_\delta)}$, $\omega(x)=e^{-x}(1-e^{-\delta})$, by the de la Vallée Poussin means of partial sums of the Fourier series in the Sobolev orthonormal system of polynomials $\{m_{n,N}^{0,r}(x)\}$ generated by the system of Meixner polynomials.
Bibliography: 32 titles.
Keywords: Sobolev type inner product, Fourier series, Meixner polynomials, approximation properties, de la Vallée Poussin means.
Received: 19.10.2023 and 21.05.2024
Published: 10.12.2024
Bibliographic databases:
Document Type: Article
MSC: 41A10
Language: English
Original paper language: Russian

§ 1. Introduction

1.1. Discrete orthogonal Meixner polynomials

Let $\alpha$ and $q$ be arbitrary real numbers, $q\neq0$. The classical Meixner polynomials $M_n^\alpha(x,q)$ can be defined using Rodrigues’s formula (see [1] or [2]) by

$$ \begin{equation*} M_n^\alpha(x,q)=\frac{q^{-n}}{n!\,\rho(x)}\Delta^n\{\rho(x)x^{[n]}\}; \end{equation*} \notag $$
here,
$$ \begin{equation*} x^{[n]}=x(x-1)\dotsb(x-n+1), \ \ \Delta f(x)=f(x+1)-f(x)\ \ \text{and} \ \ \rho(x)=q^x\frac{\Gamma(x+\alpha+1)}{\Gamma(x+1)}. \end{equation*} \notag $$
These polynomials were first studied by Meixner [3]. The interest in these polynomials stems, in particular, from their applications to problems in the theory of spectral estimation [4], optimum parameter location [5], approximate integration [6] and so on.

For $0<q<1$ and $\alpha>-1$ the polynomials $M_n^\alpha(x,q)$ are orthogonal on the uniform grid $\Omega=\{0, 1, \dots\}$ with respect to the weight $\rho(x)$:

$$ \begin{equation*} \sum_{x\in\Omega}M_n^\alpha(x,q)M_m^\alpha(x,q)\rho(x)=(1-q)^{-\alpha-1}h_n^{\alpha,q}\delta_{nm}, \qquad h_n^{\alpha,q}=\frac{\Gamma(n+\alpha+1)}{\Gamma(n+1)}q^{-n}. \end{equation*} \notag $$
For various algebraic properties of these polynomials $M_n^\alpha(x,q)$, see [1] and [2]. Asymptotic properties of the Meixner polynomials and of their generalizations have been studied extensively (see [7]–[11] and the references cited there). These studies depend on various methods based on explicit formulae, recurrence relations, links to other classical orthogonal polynomials, and also on the machinery of vector equilibrium problems in the theory of logarithmic potential, which was developed by Gonchar and Rakhmanov (see [12]–[14]). In the present paper we consider the polynomials $M_{n,N}^\alpha(x)$ obtained from the $M_n^\alpha(x,q)$ when $x$ is changed to $Nx$, $N>0$, and $e^{-1/N}$ is substituted in for $q$. Various properties of these polynomials are recalled in the concluding section, § 5.

1.2. Discrete Sobolev orthogonal polynomials

For more than three decades, the study of polynomial systems orthogonal with respect to the Sobolev inner product has been of great interest. This is partly due to the fact that the Sobolev inner products and the corresponding orthogonal systems (as well as their differential analogues) play an important role in many problems in the theory of functions, quantum mechanics, mathematical physics, numerical analysis and so on [15]–[17]. The Fourier series with respect to these polynomials have important properties for applications, lacking in Fourier series with respect to classical orthogonal systems. For example, for an approximate solution of boundary-value problems, where the behaviour of an approximate solution must be controlled at one or several points, the machinery of Fourier series with respect to Sobolev polynomials is more natural than that of Fourier series in classical orthogonal polynomials, [18]–[20].

In the literature systems of Sobolev orthogonal polynomials are constructed in various ways, which differ by the choice of inner products. We recall some inner products related to Meixner polynomials. In [21] and [22] the Sobolev inner product of the form

$$ \begin{equation*} \langle f,g\rangle_S=\sum_{x=0}^{\infty}f(x)g(x)\rho(x)+Mf(0)g(0)+N\Delta f(0)\Delta g(0), \end{equation*} \notag $$
where $M,N\geqslant 0$, was considered. In [23] and [24] the more general inner product
$$ \begin{equation*} \langle f,g\rangle_S=\sum_{x=0}^{\infty}f(x)g(x)\rho(x)+\lambda\sum_{x=0}^{\infty}\Delta f(x)\Delta g(x)\rho(x), \end{equation*} \notag $$
where $\lambda\geqslant0$, was used. For other types of Sobolev inner products related to Meixner polynomials, see [25] and [26]. These studies are mainly concerned with the distribution of zeros of the Meixner–Sobolev polynomials, and with their algebraic, asymptotic and difference properties. The Sobolev inner product
$$ \begin{equation} \langle f,g\rangle_S=\sum_{k=0}^{r-1}\Delta^kf(0)\Delta^kg(0)+\sum_{x=0}^\infty\Delta^rf(x)\Delta^rg(x)\rho(x) \end{equation} \tag{1.1} $$
was studied by Sharapudinov and his students [27]–[29], who proposed a method of the construction of systems of polynomials orthonormal with respect to the inner product (1.1). Let us describe the essence of this method. Let $1\leqslant p<\infty$, $l_w^p(\Omega)$ be the space of discrete functions $f$ defined on the grid $\Omega = \{0, 1, \dots\}$ and such that $\|f\|_{l_{w}^p(\Omega)}^p{=}\sum_{x\in\Omega}|f(x)|^pw(x) < \infty$. Next, let $W^r_{l_{w}^p(\Omega)}$ be the space of discrete functions $f$ defined on the grid $\Omega$ such that $\lim_{x\to+\infty}|f(x)|w(x)=0$ and $\Delta^rf\in l_{w}^p(\Omega)$. We denote the system of polynomials orthonormal in the usual sense on the grid $\Omega$ with respect to a weight $w(x)$ by $\{\varphi_n(x)\}$. For $r\in\mathbb{N}$ we consider the new system $\{\varphi_{r,n}(x)\}$ generated by $\{\varphi_n(x)\}$ via the formulae
$$ \begin{equation*} \varphi_{r,n}(x)=\frac{x^{[n]}}{n!}, \qquad n=0,\dots,r-1, \end{equation*} \notag $$
and
$$ \begin{equation*} \varphi_{r,n}(x)= \frac{1}{(r-1)!}\sum_{t=0}^{x-r}(x-1-t)^{[r-1]}\varphi_{n-r}(t), \qquad x\geqslant r, \quad n\geqslant r. \end{equation*} \notag $$
We refer to the same studies for various properties of this system. In particular, they showed that
$$ \begin{equation*} \Delta^\nu \varphi_{r,n}(x)= \begin{cases} \varphi_{r-\nu,n-\nu}(x),& 0\leqslant\nu\leqslant r-1, \ r\leqslant n, \\ \varphi_{n-r}(x),& \nu=r\leqslant n, \\ \varphi_{r-\nu,n-\nu}(x),& \nu\leqslant n<r, \\ 0,& n<\nu\leqslant r. \end{cases} \end{equation*} \notag $$

In addition, the following result was established.

Theorem A. The system of polynomials $\{\varphi_{r,n}(x)\}$ is complete in the space $W^r_{l_w^2(\Omega)}$.

The Fourier series of a function $f\in W^r_{l_w^2(\Omega)}$ in the system $\{\varphi_{r,n}(x)\}$ has the form

$$ \begin{equation*} f(x)=\sum_{k=0}^{r-1}\Delta^kf(0)\frac{x^{[k]}}{k!}+\sum_{k=r}^\infty c_{r,k}(f)\varphi_{r,k}(x), \qquad x\in\Omega, \end{equation*} \notag $$
where
$$ \begin{equation*} c_{r,k}(f)=\sum_{t\in\Omega}\Delta^r f(t)\varphi_{k-r}(t)w(t), \qquad k\geqslant r. \end{equation*} \notag $$

In this paper we consider the system of polynomials

$$ \begin{equation} \begin{gathered} \, \notag m_{n,N}^{\alpha,r}(x)=\frac{(Nx)^{[n]}}{n!}, \qquad n=0,\dots,r-1, \\ m_{n,N}^{\alpha,r}(x)=\frac{1}{(r-1)!}\sum_{t\in \Omega_\delta^x}(Nx-1-Nt)^{[r-1]}m_{n-r,N}^\alpha(t), \qquad x\geqslant r\delta, \quad n\geqslant r, \end{gathered} \end{equation} \tag{1.2} $$
where
$$ \begin{equation*} \Omega_\delta^x=\{0, \delta, \dots, x-r\delta\}, \ \ \delta=\frac 1N,\quad\text{and} \quad m_{n,N}^\alpha(x)=\frac{1}{\sqrt{h_{n}^\alpha}}\, M_{n,N}^\alpha(x), \ \ h_n^\alpha=h_n^{\alpha,e^{-\delta}}. \end{equation*} \notag $$

Some known properties of this system are recalled in the next subsection.

1.3. Some properties of the Meixner–Sobolev polynomials

To begin with, we note that $m_{n,N}^{\alpha,r}(x)$, which is defined in (1.2), is an algebraic polynomial of degree $n$. Indeed, from (1.2) and (5.2) we have

$$ \begin{equation} m_{n,N}^{\alpha,r}(x)=\frac{1}{\sqrt{h_{n-r}^\alpha}} \binom{n-r+\alpha}{n-r}\sum_{k=0}^{n-r}\frac{(n-r)^{[k]}(1-e^\delta)^k}{(\alpha+1)_kk!}P_{k+r}(x), \end{equation} \tag{1.3} $$
where
$$ \begin{equation*} P_{k+r}(x)=\frac{1}{(r-1)!}\sum_{t\in \Omega_\delta^x}(Nx-1-Nt)^{[r-1]}(Nx)^{[k]}. \end{equation*} \notag $$
The discrete analogue of Taylor’s formula for the function $d(x)=(Nx)^{[k+r]}$ is as follows:
$$ \begin{equation*} \begin{aligned} \, d(x) &=\sum_{k=0}^{r-1}\Delta_\delta^kd(0)\frac{(Nx)^{[k]}}{k!}+\frac{1}{(r-1)!} \sum_{t\in \Omega_\delta^x}(Nx-1-Nt)^{[r-1]}\Delta^r_\delta d(x) \\ &=\sum_{k=0}^{r-1}\Delta_\delta^kd(0)\frac{(Nx)^{[k]}}{k!}+(k+r)^{[r]}P_{k+r}(x)=(k+r)^{[r]}P_{k+r}(x), \end{aligned} \end{equation*} \notag $$
where $\Delta_\delta f(x)=f(x+\delta)-f(x)$. Hence
$$ \begin{equation*} P_{k+r}(x)=\frac{d(x)}{(k+r)^{[r]}}=\frac{(Nx)^{[k+r]}}{(k+r)^{[r]}}. \end{equation*} \notag $$
As a result, from (1.3) we obtain
$$ \begin{equation*} m_{n,N}^{\alpha,r}(x)=\frac{1}{\sqrt{h_{n-r}^\alpha}} \binom{n-r+\alpha}{n-r}\sum_{k=0}^{n-r}\frac{(n-r)^{[k]}(1-e^\delta)^k}{(\alpha+1)_k}\frac{(Nx)^{[k+r]}}{(k+r)!}. \end{equation*} \notag $$
For other properties of the system of polynomials $\{m_{n,N}^{\alpha,r}(x)\}$, see [30]. In particular,

$\bullet$ if $n\geqslant r$ and $x\in\{0, \delta, \dots, (r-1)\delta\}$, then $m_{n,N}^{\alpha,r}(x)=0$;

$\bullet$ the $\nu$th finite difference satisfies

$$ \begin{equation*} \Delta_\delta^\nu m_{n,N}^{\alpha,r}(x)= \begin{cases} m_{n-\nu,N}^{\alpha,r-\nu}(x),& 0\leqslant\nu\leqslant r-1,\ r\leqslant n, \\ m_{n-r,N}^{\alpha}(x),& \nu=r\leqslant n, \\ m_{n-\nu,N}^{\alpha,r-\nu}(x),& \nu\leqslant n<r, \\ 0,& n<\nu\leqslant r; \end{cases} \end{equation*} \notag $$

$\bullet$ the polynomial $m_{n,N}^{\alpha,r}(x)$ obeys the equality

$$ \begin{equation} m_{n,N}^{\alpha,r}(x)= \frac{1}{(1-e^\delta)^r}\frac{1}{\sqrt{h_{n}^{\alpha}}}\biggl[M_{n,N}^{\alpha-r}(x) -\sum_{k=0}^{r-1}\Delta_\delta^kM_{n,N}^{\alpha-r}(0)\frac{(Nx)^{[k]}}{k!}\biggr], \end{equation} \tag{1.4} $$
where
$$ \begin{equation*} \Delta^k_\delta M_{n,N}^{\alpha-r}(0)=(1-e^\delta)^k\frac{\Gamma(n+\alpha-r+1)}{(n-k)!\,\Gamma(\alpha-r+k+1)}; \end{equation*} \notag $$
note that $\Delta^k_\delta M_{n,N}^{\alpha-r}(0)=0$ for $\alpha=0$;

$\bullet$ the system $\{m_{n,N}^{\alpha,r}(x)\}$ is complete in the space $W^r_{l^2_{\rho_N}(\Omega_\delta)}$ and orthonormal with respect to the Sobolev inner product

$$ \begin{equation*} \langle f,g\rangle_S=\sum_{k=0}^{r-1}\Delta^k_\delta f(0)\Delta^k_\delta g(0)+\sum_{x\in \Omega_\delta}\Delta^r_\delta f(x)\Delta^r_\delta g(x)\rho_N(x), \end{equation*} \notag $$
where
$$ \begin{equation*} \Omega_\delta=\{0, \delta, 2\delta, \dots\}\quad\text{and} \quad \rho_N(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}(1-e^{-\delta})^{\alpha+1}. \end{equation*} \notag $$

The Fourier series of a function $f\in W^r_{l^2_{\rho_N}(\Omega_\delta)}$ with respect to this system has the form

$$ \begin{equation} f(x)\sim \sum_{k=0}^{r-1}\Delta_\delta^kf(0)\frac{(Nx)^{[k]}}{k!}+\sum_{k=r}^\infty c^\alpha_{r,k}(f)m^{\alpha,r}_{k,N}(x), \end{equation} \tag{1.5} $$
where
$$ \begin{equation} c^\alpha_{r,k}(f)=\sum_{t\in\Omega_\delta}\Delta_\delta^r f(t)m^\alpha_{k-r,N}(t)\rho_N(t), \qquad k\geqslant r. \end{equation} \tag{1.6} $$
The problem of the convergence of the Fourier series (1.5) to a function $f\in W^r_{l^p_{\rho_N}(\Omega_\delta)}$ for $1\leqslant p<\infty$ was considered in [30].

Theorem B. Let $\alpha>-1$ and $1\leqslant p<\infty$. Let $f\in W^r_{l^p_{\rho_N}(\Omega_\delta)}$. Then for $p\geqslant2$ the series (1.5) converges pointwise to $f$ on $\Omega_\delta$. If $1\leqslant p<2$, then there exist a grid $\Omega_\delta$ and a function $f\in W^r_{l^p_{\rho_N}(\Omega_\delta)}$ whose Fourier series diverges at some point $x_0\in \Omega_\delta$.

In what follows we denote by $S_{n+r,N}^{\alpha,r}(f,x)$ a partial sum of the series (1.5):

$$ \begin{equation} S_{n+r,N}^{\alpha,r}(f,x)=\sum_{k=0}^{r-1}\Delta_\delta^kf(0)\frac{(Nx)^{[k]}}{k!} +\sum_{k=r}^{n+r} c^\alpha_{r,k}(f)m^{\alpha,r}_{k,N}(x). \end{equation} \tag{1.7} $$
The following important properties of the sums $S_{n+r,N}^{\alpha,r}(f,x)$ can be derived from (1.7):

Consider the case $\alpha=0$. From (1.4) and (5.9) we obtain

$$ \begin{equation*} m_{n+r,N}^{0,r}(x)=\frac{(Nx)^{[r]}}{\sqrt{(n+r)^{[r]}}}\, m_{n,N}^r(x-r\delta). \end{equation*} \notag $$
The partial sum (1.7) can be written as
$$ \begin{equation*} S_{n+r,N}^{0,r}(f,x)=\sum_{k=0}^{r-1}\Delta_\delta^kf(0)\frac{(Nx)^{[k]}}{k!}+(Nx)^{[r]}\sum_{k=r}^{n+r} c^0_{r,k}(f)\frac{m^{r}_{k-r,N}(x-r\delta)}{\sqrt{k^{[r]}}}. \end{equation*} \notag $$
In addition, by (5.15) we have
$$ \begin{equation} \begin{aligned} \, \notag &\Delta_\delta^l S_{n+r,N}^{0,r}(f,x) \\ \notag &\qquad =\sum_{k=0}^{r-l-1}\Delta_\delta^{k+l}f(0)\frac{(Nx)^{[k]}}{k!} +(Nx)^{[r-l]}\sum_{k=r}^{n+r} c^0_{r,k}(f)\frac{m^{r-l}_{k-r,N}(x-(r-l)\delta)}{\sqrt{(k-l)^{[r-l]}}} \\ \notag &\qquad =\sum_{k=0}^{r-l-1}\Delta_\delta^{k+l}f(0)\frac{(Nx)^{[k]}}{k!} +(Nx)^{[r-l]}\sum_{k=r}^{n+r} c^0_{r-l,k-l}(\Delta_\delta^lf)\frac{m^{r-l}_{k-r,N}(x-(r-l)\delta)}{\sqrt{(k-l)^{[r-l]}}} \\ &\qquad =S_{n+r-l,N}^{0,r-l}(\Delta_\delta^lf,x). \end{aligned} \end{equation} \tag{1.9} $$

The approximation properties of the partial sums $\Delta_\delta^lS_{n+r,N}^{0,r}(f,x)$ were considered in [30]. In particular, it was shown that

$$ \begin{equation*} e^{-x/2}x^{-(r-l)/2+1/4}|\Delta_\delta^lf(x)-\Delta_\delta^lS_{n+r,N}^{0,r}(f,x)| \leqslant E_{n+r-l}^{r-l}(\Delta_\delta^lf,\delta)(1+\lambda_{n,N}^{r-l}(x)), \end{equation*} \notag $$
where
$$ \begin{equation} \begin{gathered} \, \notag \lambda_{n,N}^{r}(x)\leqslant c(r,\lambda) \begin{cases} \log(n+1),& x\in\biggl[r\delta, \dfrac{\nu}{2}\biggr], \\ \log(n+1)+\biggl(\dfrac{\nu}{\nu^{1/3}+|x-\nu|}\biggr)^{1/4},& x\in\biggl(\dfrac{\nu}{2}, \dfrac{3\nu}{2}\biggr], \\ n^{-r/2+7/4}x^{r/2+1/4}e^{-x/4}, & x\in\biggl(\dfrac{3\nu}{2}, \infty\biggr), \end{cases} \\ \notag \nu=\nu_n(r)=4n+2r+2, \\ E_{n+r}^r(f,\delta)=\inf_{q_{n+r}}\sup_{x\in\Omega_{r,\delta}} e^{-x/2}x^{-r/2+1/4}|f(x)-q_{n+r}(x)|, \end{gathered} \end{equation} \tag{1.10} $$
and the infimum is taken over all algebraic polynomials $q_{n+r}(x)$ of degree $n+r$ such that
$$ \begin{equation*} \Delta_\delta^i f(0)=\Delta_\delta^i q_{n+r}(0), \quad i=0,\dots, r-1,\quad\text{where } \Omega_{r,\delta}=\{r\delta, (r+1)\delta, \dots\}. \end{equation*} \notag $$
Here and in what follows, by $c(\alpha)$, $c(\alpha, \lambda)$ and $c(a,b,\alpha,\lambda)$ we denote positive numbers depending only on the parameters and maybe different at different places.

1.4. The main results

In this paper we study the approximation properties of the de la Vallée Poussin means

$$ \begin{equation} \mathcal{V}_{n+m+r}(f,x)=\frac{1}{m+1}\sum_{k=n}^{n+m}S_{k+r,N}^{0,r}(f,x) \end{equation} \tag{1.11} $$
and of their finite differences. An important role in this problem is played by the behaviour of the corresponding Lebesgue function $\Lambda_{n,m}^{\alpha}(x)$. The following theorem is one of our main results.

Theorem 1. Let $\alpha\geqslant0$, $0<a\leqslant b$, $an\leqslant m\leqslant bn$ and $x\in[0,\infty)$. Then

$$ \begin{equation*} \Lambda_{n,m}^{\alpha}(x)\leqslant c(\alpha,\lambda,a,b). \end{equation*} \notag $$

In the proof of the next theorem we employ Lebesgue’s inequality for the means $\mathcal{V}_{n+m+r}(f,x)$ and an estimate for $\Lambda_{n,m}^{\alpha}(x)$.

Theorem 2. Let $f\in W_{l_{\omega}^2(\Omega_\delta)}^r$ and $\omega(x)=e^{-x}(1-e^{-\delta})$, and let $a$ and $b$ be fixed real numbers, $0<a\leqslant b$. Then for $an\leqslant m\leqslant bn$ and $0\leqslant l\leqslant r-1$,

$$ \begin{equation} e^{-x/2}x^{(l-r)/2+1/4}|\Delta_\delta^l f(x)-\Delta_\delta^l\mathcal V_{n+m+r}(f,x)| \leqslant c(r,\lambda,a,b)E_{n+r-l}^{r-l}(\Delta_\delta^l f,\delta). \end{equation} \tag{1.12} $$

1.5. The structure of the paper

Section 1 contains five subsections. Some properties of the classical Meixner polynomials are collected in § 1.1. General facts on polynomials orthogonal with respect to Sobolev inner products are collected in § 1.2. Some known properties of the Meixner–Sobolev polynomials are recalled in § 1.3. The main results of the paper are formulated in § 1.4. This subsection explains the structure of the paper. In § 2 we present a representation and estimates for Fejér kernels of the form

$$ \begin{equation*} \mathcal{K}_{n,N}^{\alpha}(x,y)=\frac{1}{n}\sum_{k=0}^{n-1}\sum_{j=0}^{k}m_{j,N}^\alpha(x)m_{j,N}^\alpha(y). \end{equation*} \notag $$
Theorems 1 and 2 are proved in §§ 3 and 4, respectively. In § 5, the concluding section, we collect some properties of the modified Meixner polynomials.

§ 2. Representation and estimates for Fejér kernels

A representation and estimates for the Fejér kernels

$$ \begin{equation*} K_{n,1}(x,y)=\frac{1}{n}\sum_{k=0}^{n-1}\sum_{j=0}^{k}\frac{j!}{\Gamma(j+\alpha+1)}L_j^\alpha(x)L_j^\alpha(y) \end{equation*} \notag $$
were obtained in [31], in the study of the boundedness (in $L^p$-norms) of the Fejér means of Fourier–Laguerre sums.

In this section we obtain similar estimates for Fejér kernels in the case of Meixner polynomials $M_{n,N}^\alpha(x)$. Consider the Fejér-type kernels

$$ \begin{equation} \mathcal{K}_{n,N}^{\alpha}(x,y)=\frac{1}{n}\sum_{k=0}^{n-1}K_{k,N}^\alpha(x,y), \end{equation} \tag{2.1} $$
where $K_{n,N}^\alpha(x,y)$ is defined by (5.10) (see § 5). The following result holds.

Lemma 1. Let $x\neq y$. Then

$$ \begin{equation} \begin{aligned} \, \notag \mathcal{K}_{n,N}^{\alpha}(x,y) &=-\frac{\delta}{(e^{\delta}-1)e^{(n-1)\delta}}\frac{n!}{\Gamma(n+\alpha+1)}\frac{1}{(x-y)^2} \\ \notag &\qquad \times \biggl\{xM_{n,N}^\alpha(x-\delta)M_{n,N}^\alpha(y)+yM_{n,N}^\alpha(x)M_{n,N}^\alpha(y-\delta) \\ \notag &\qquad\qquad -\frac{x}{n}M_{n,N}^\alpha(y)\biggl[\frac{e^{\delta}(x-\delta)}{x-y-\delta}M_{n-1,N}^{\alpha+1}(x-2\delta)+\alpha M_{n-1,N}^{\alpha+1}(x-\delta)\biggr] \\ \notag &\qquad\qquad -\frac{y}{n}M_{n,N}^\alpha(x)\biggl[\alpha M_{n-1,N}^{\alpha+1}(y-\delta)-\frac{e^{\delta}(y-\delta)}{x-y+\delta}M_{n-1,N}^{\alpha+1}(y-2\delta)\biggr] \\ \notag &\qquad\qquad +\frac{xy}{n}\biggl[\frac{e^{\delta}}{x-y-\delta}+\frac{e^\delta-1}{\delta}\biggr]M_{n,N}^\alpha(x-\delta)M_{n-1,N}^{\alpha+1}(y-\delta) \\ \notag &\qquad\qquad -\frac{xy}{n}\biggl[\frac{e^{\delta}}{x-y+\delta}-\frac{e^\delta-1}{\delta}\biggr]M_{n-1,N}^{\alpha+1}(x-\delta)M_{n,N}^{\alpha}(y-\delta) \\ &\qquad\qquad +\frac{2xy}{n}\frac{e^\delta-1}{\delta}M_{n-1,N}^{\alpha+1}(x-\delta)M_{n-1,N}^{\alpha+1}(y-\delta)\biggr\}. \end{aligned} \end{equation} \tag{2.2} $$

Proof. In view of (5.10), (5.4) and (5.5) we can write (2.1) as
$$ \begin{equation*} \begin{aligned} \, &2(x-y)n\mathcal{K}_{n,N}^{\alpha}(x,y) \\ &\ \ =\frac{\delta}{(e^{\delta}-1)e^{(n-1)\delta}}\frac{n!}{\Gamma(n+\alpha)}\bigl(M_{n-1,N}^\alpha(x)M_{n,N}^\alpha(y) -M_{n,N}^\alpha(x)M_{n-1,N}^\alpha(y)\bigr) \\ &\ \ \qquad +\frac{\delta}{(e^{\delta}-1)}\sum_{k=1}^{n-1}\frac{1}{e^{(n-1)\delta}}\frac{k!}{\Gamma(k+\alpha)} \bigl(M_{k-1,N}^\alpha(x)M_{k,N}^\alpha(y)-M_{k,N}^\alpha(x)M_{k-1,N}^\alpha(y)\bigr) \\ &\ \ \qquad +\frac{e^{-\delta}-1}{(e^{\delta}-1)}(y-x)\sum_{k=1}^{n-1}\frac{1}{e^{(k-1)\delta}} \frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x)M_{k,N}^\alpha(y) \\ &\ \ \qquad +\frac{\delta}{(e^{\delta}-1)\Gamma(\alpha+1)}\bigl(M_{0,N}^\alpha(x)M_{1,N}^\alpha(y)-M_{1,N}^\alpha(x)M_{0,N}^\alpha(y)\bigr) \\ &\ \ \qquad +\frac{1}{e^{\delta}-1}\sum_{k=1}^{n-1}\frac{k!}{e^{(k-1)\delta}}\frac{yM_{k,N}^\alpha(x)\Delta_\delta M_{k,N}^\alpha(y-\delta)-xM_{k,N}^\alpha(y)\Delta_\delta M_{k,N}^\alpha(x-\delta)}{\Gamma(k+\alpha+1)}. \end{aligned} \end{equation*} \notag $$

The first two terms on the right give in combination $n(x- y)\mathcal{K}_{n,N}^{\alpha}(x,y)$. Next,

$$ \begin{equation*} \begin{aligned} \, &\frac{\delta}{(e^{\delta}-1)\Gamma(\alpha+1)}\bigl(M_{0,N}^\alpha(x)M_{1,N}^\alpha(y)-M_{1,N}^\alpha(x)M_{0,N}^\alpha(y)\bigr) \\ &\qquad =\frac{x-y}{\Gamma(\alpha+1)}=\frac{x-y}{\Gamma(\alpha+1)}M_{0,N}^\alpha(x)M_{0,N}^\alpha(y), \end{aligned} \end{equation*} \notag $$
and so the third and fourth terms give in combination $(x-y)K_{n-1,N}^{\alpha}(x,y)$. Thus, we have
$$ \begin{equation} \begin{aligned} \, \notag &(x-y)n\mathcal{K}_{n,N}^{\alpha}(x,y)=(x-y)K_{n-1,N}^{\alpha}(x,y) \\ &\qquad +\frac{1}{e^{\delta}-1}\sum_{k=1}^{n-1}\frac{k!}{e^{(k-1)\delta}}\frac{yM_{k,N}^\alpha(x)\Delta_\delta M_{k,N}^\alpha(y-\delta)-xM_{k,N}^\alpha(y)\Delta_\delta M_{k,N}^\alpha(x-\delta)}{\Gamma(k+\alpha+1)}. \end{aligned} \end{equation} \tag{2.3} $$
Now let us transform the expression under the sum sign. From the recurrence formula
$$ \begin{equation} \begin{aligned} \, \notag &(k(e^{-\delta}+1)+e^{-\delta}(\alpha+1)+(e^{-\delta}-1)Nx)M_{k,N}^\alpha(x) \\ &\qquad =(k+1)e^{-\delta}M_{k+1,N}^\alpha(x)+(k+\alpha)M_{k-1,N}^\alpha(x) \end{aligned} \end{equation} \tag{2.4} $$
and since ${\Delta_\delta(f(t-\delta)g(t-\delta))=f(t)\Delta_\delta g(t-\delta)+g(t-\delta)\Delta_\delta f(t-\delta)}$, we have
$$ \begin{equation*} \begin{aligned} \, &\Delta_\delta\bigl[(k(e^{-\delta}+1)+e^{-\delta}(\alpha+1)+(e^{-\delta}-1)N(y-\delta))M_{k,N}^\alpha(y-\delta)\bigr] \\ &\qquad =(k+1)e^{-\delta}\Delta_\delta M_{k+1,N}^\alpha(y-\delta)+(k+\alpha)\Delta_\delta M_{k-1,N}^\alpha(y-\delta) \\ &\qquad =(k(e^{-\delta}+1)+e^{-\delta}(\alpha+1)+(e^{-\delta}-1)Ny)\Delta_\delta M_{k,N}^\alpha(y-\delta) \\ &\qquad\qquad+(e^{-\delta}-1)M_{k,N}^\alpha(y-\delta). \end{aligned} \end{equation*} \notag $$
Hence
$$ \begin{equation} \begin{aligned} \, \notag &(k(e^{-\delta}+1)+e^{-\delta}(\alpha+1)+(e^{-\delta}-1)Ny)\Delta_\delta M_{k,N}^\alpha(y-\delta) \\ \notag &\qquad =(k+1)e^{-\delta}\Delta_\delta M_{k+1,N}^\alpha(y-\delta)+(k+\alpha)\Delta_\delta M_{k-1,N}^\alpha(y-\delta) \\ &\qquad\qquad+ (1-e^{-\delta})M_{k,N}^\alpha(y-\delta). \end{aligned} \end{equation} \tag{2.5} $$
Now we multiply (2.4) by
$$ \begin{equation*} \frac{1}{e^{(k-1)\delta}}\frac{k!}{\Gamma(k+\alpha+1)}\Delta_\delta M_{k,N}^\alpha(y-\delta), \end{equation*} \notag $$
(2.5) by
$$ \begin{equation*} \frac{1}{e^{(k-1)\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x), \end{equation*} \notag $$
and subtract the second equality from the first. As a result,
$$ \begin{equation} \begin{aligned} \, \notag &\frac{(e^{\delta}-1)N(x-y)}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x)\Delta_\delta M_{k,N}^\alpha(y-\delta) \\ &\qquad=\Delta_{\delta_y}\mathcal{M}_{k,N}^\alpha(x,y-\delta) -\Delta_{\delta_y}\mathcal{M}_{k-1,N}^\alpha(x,y-\delta) \notag \\ &\qquad\qquad+\frac{e^{\delta}-1}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x) M_{k,N}^\alpha(y-\delta), \end{aligned} \end{equation} \tag{2.6} $$
where
$$ \begin{equation*} \begin{gathered} \, \mathcal{M}_{k,N}^\alpha(\tau,t)=\frac{(k+1)!}{e^{k\delta}\Gamma(k+\alpha+1)} \bigl[M_{k,N}^\alpha(\tau)M_{k+1,N}^\alpha(t)-M_{k+1,N}^\alpha(\tau) M_{k,N}^\alpha(t)\bigr], \\ \Delta_{\delta_y}f(x,y)=f(x, y+\delta)-f(x, y). \end{gathered} \end{equation*} \notag $$
A similar analysis shows that
$$ \begin{equation} \begin{aligned} \, \notag &\frac{(e^{\delta}-1)N(x-y)}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(y)\Delta_\delta M_{k,N}^\alpha(x-\delta) \\ \notag &\qquad=\Delta_{\delta_x}\mathcal{M}_{k,N}^\alpha(x-\delta,y) -\Delta_{\delta_x}\mathcal{M}_{k-1,N}^\alpha(x-\delta,y) \\ &\qquad\qquad-\frac{e^{\delta}-1}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x-\delta) M_{k,N}^\alpha(y). \end{aligned} \end{equation} \tag{2.7} $$
From (2.6) and (2.7) we obtain
$$ \begin{equation*} \begin{aligned} \, &\frac{y}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x)\Delta_\delta M_{k,N}^\alpha(y-\delta) \\ &\qquad =\frac{y}{(e^\delta-1)N(x-y)}\bigl[ \Delta_{\delta_y}\mathcal{M}_{k,N}^\alpha(x,y-\delta)-\Delta_{\delta_y}\mathcal{M}_{k-1,N}^\alpha(x,y-\delta)\bigr] \\ &\qquad\qquad +\frac{y}{N(x-y)}\frac{1}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x) M_{k,N}^\alpha(y-\delta), \\ &\frac{x}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(y)\Delta_\delta M_{k,N}^\alpha(x-\delta) \\ &\qquad =\frac{x}{(e^\delta-1)N(x-y)}\bigl[ \Delta_{\delta_x}\mathcal{M}_{k,N}^\alpha(x-\delta,y)-\Delta_{\delta_x}\mathcal{M}_{k-1,N}^\alpha(x-\delta,y)\bigr] \\ &\qquad\qquad -\frac{x}{N(x-y)}\frac{1}{e^{k\delta}}\frac{k!}{\Gamma(k+\alpha+1)}M_{k,N}^\alpha(x-\delta) M_{k,N}^\alpha(y). \end{aligned} \end{equation*} \notag $$
In view of these equalities we can write (2.3) as
$$ \begin{equation*} \begin{aligned} \, &(x-y)n\mathcal{K}_{n,N}^{\alpha}(x,y)=(x-y)K_{n-1,N}^{\alpha}(x,y) \\ &\qquad +\frac{e^\delta y}{(e^\delta-1)^2N(x-y)}\bigl[\Delta_{\delta_y}\mathcal{M}_{n-1,N}^\alpha(x,y-\delta)-\Delta_{\delta_y}\mathcal{M}_{0,N}^\alpha(x,y-\delta)\bigr] \\ &\qquad -\frac{e^\delta x}{(e^\delta-1)^2N(x-y)}\bigl[\Delta_{\delta_x}\mathcal{M}_{n-1,N}^\alpha(x-\delta,y) -\Delta_{\delta_x}\mathcal{M}_{0,N}^\alpha(x-\delta,y)\bigr] \\ &\qquad +\frac{e^\delta}{(e^\delta-1)N(x-y)}\biggl[xK_{n-1,N}^{\alpha}(x-\delta,y)+yK_{n-1,N}^{\alpha}(x,y-\delta)- \frac{x+y}{\Gamma(\alpha+1)}\biggr]. \end{aligned} \end{equation*} \notag $$
Next, we have
$$ \begin{equation*} \Delta_{\delta_y}\mathcal{M}_{0,N}^\alpha(x,y-\delta)=-\frac{e^\delta-1}{\Gamma(\alpha+1)}\quad\text{and} \quad \Delta_{\delta_x}\mathcal{M}_{0,N}^\alpha(x-\delta,y)=\frac{e^\delta-1}{\Gamma(\alpha+1)}, \end{equation*} \notag $$
and therefore
$$ \begin{equation*} \begin{aligned} \, &(x-y)n\mathcal{K}_{n,N}^{\alpha}(x,y)=(x-y)K_{n-1,N}^{\alpha}(x,y) \\ &\qquad +\frac{e^\delta}{(e^\delta-1)N(x-y)}\bigl[x K_{n-1,N}^{\alpha}(x-\delta,y)+y K_{n-1,N}^{\alpha}(x,y-\delta)\bigr] \\ &\qquad +\frac{e^\delta}{(e^\delta-1)^2N(x-y)}\bigl[y\Delta_{\delta_y}\mathcal{M}_{n-1,N}^\alpha(x,y-\delta)- x\Delta_{\delta_x}\mathcal{M}_{n-1,N}^\alpha(x-\delta,y)\bigr]. \end{aligned} \end{equation*} \notag $$

Using (5.6) and (5.10), we find that

$$ \begin{equation} (x-y)K_{n-1,N}^{\alpha}(x,y)=a_n^{\alpha,\delta} \bigl[M_{n,N}^{\alpha}(x)M_{n,N}^{\alpha-1}(y)-M_{n,N}^{\alpha-1}(x)M_{n,N}^{\alpha}(y)\bigr], \end{equation} \tag{2.8} $$
where
$$ \begin{equation*} a_n^{\alpha,\delta}=\frac{\delta n!}{(e^\delta-1)e^{(n-1)\delta}\Gamma(n+\alpha)}. \end{equation*} \notag $$
Next, an appeal to (5.4), (5.7) and (5.6) shows that
$$ \begin{equation*} \begin{aligned} \, &\frac{e^\delta y}{(e^\delta-1)^2N(x-y)}\Delta_{\delta_y}\mathcal{M}_{n-1,N}^\alpha(x,y-\delta) \\ &\qquad =a_n^{\alpha,\delta}\frac{y}{x-y}\bigl[M_{n,N}^{\alpha}(x)\bigl(M_{n,N}^{\alpha-1}(y) -M_{n,N}^{\alpha}(y-\delta)\bigr) \\ &\qquad\qquad+ M_{n,N}^{\alpha-1}(x)\bigl(M_{n,N}^{\alpha+1}(y-\delta)-M_{n,N}^{\alpha}(y)\bigr)\bigr], \\ &\frac{e^\delta x}{(e^\delta-1)^2N(x-y)}\Delta_{\delta_x}\mathcal{M}_{n-1,N}^\alpha(x-\delta,y) \\ &\qquad =a_n^{\alpha,\delta}\frac{x}{x-y}\bigl[M_{n,N}^{\alpha}(y)\bigl(M_{n,N}^{\alpha}(x-\delta) -M_{n,N}^{\alpha-1}(x)\bigr) \\ &\qquad\qquad+ M_{n,N}^{\alpha-1}(y)\bigl(M_{n,N}^{\alpha}(x)-M_{n,N}^{\alpha+1}(x-\delta)\bigr)\bigr]. \end{aligned} \end{equation*} \notag $$
Now (2.2) follows from (5.6), (5.8) and (2.8).

This proves Lemma 1.

From equality (2.2) and the weighted estimate (5.14) we obtain

$$ \begin{equation} \begin{aligned} \, \notag &e^{-(x+y)/2}|\mathcal{K}_{n,N}^\alpha(x,y)|\leqslant c(\alpha,\lambda) \frac{1}{n^\alpha(x-y)^2}\biggl\{(x+y)A_{n}^{\alpha}(x)A_{n}^{\alpha}(y) \\ \notag &\quad +\frac{x}{n}A_{n-1}^{\alpha+1}(x)A_{n}^{\alpha}(y)\biggl[\frac{x}{|x-y|}+1\biggr]+ \frac{y}{n}A_{n}^{\alpha}(x)A_{n-1}^{\alpha+1}(y)\biggl[\frac{y}{|x-y|}+1\biggr] \\ &\quad +\frac{xy}{n}\biggl(\frac{1}{|x-y|}+1\biggr)\bigl[A_{n}^{\alpha}(x)A_{n-1}^{\alpha+1}(y)+A_{n-1}^{\alpha+1}(x)A_{n}^{\alpha}(y)\bigr]+ \frac{2xy}{n}A_{n-1}^{\alpha+1}(x)A_{n-1}^{\alpha+1}(y)\biggr\}. \end{aligned} \end{equation} \tag{2.9} $$

Next, by (5.12), for the function $A_n^\alpha(x)$ we have

$$ \begin{equation} A_{n-1}^{\alpha+1}(x)\leqslant c(\alpha)nA_{n}^{\alpha}(x), \qquad 0\leqslant x\leqslant \frac{1}{\theta_n}, \end{equation} \tag{2.10} $$
$$ \begin{equation} A_{n-1}^{\alpha+1}(x)\leqslant c(\alpha)\sqrt{\frac{n}{x}}A_{n}^{\alpha}(x), \qquad \frac{1}{\theta_n}\leqslant x\leqslant \frac{\theta_n}{2}, \end{equation} \tag{2.11} $$
and
$$ \begin{equation} A_{n-1}^{\alpha+1}(x)\leqslant c(\alpha)A_{n}^{\alpha}(x), \qquad \frac{\theta_n}{2}<x<\infty. \end{equation} \tag{2.12} $$
From (2.9)(2.12) and (5.14) it is easy to find estimates for the kernel $\mathcal{K}_{n,N}^\alpha(x,y)$ which depend on the position of the variables $x$ and $y$ on the half-axis $[0,\infty)$. Namely, the following results hold.

Lemma 2. If $x>0$, $y>0$ and $|x-y|\geqslant{\theta_n}/{4}$, then

$$ \begin{equation*} e^{-(x+y)/2}|\mathcal{K}_{n,N}^\alpha(x,y)|\leqslant c(\alpha,\lambda)\theta_n^{-(\alpha+1)}A_n^\alpha(x)A_n^\alpha(y). \end{equation*} \notag $$

Lemma 3. If $0<x,y<{\theta_n}/{2}$ and $x>2y$ $(y>2x)$, then

$$ \begin{equation} e^{-(x+y)/2}|\mathcal{K}_{n,N}^\alpha(x,y)|\leqslant \frac{c(\alpha,\lambda)\theta_n^{-\alpha}}{\max(x,y)}A_n^\alpha(x)A_n^\alpha(y). \end{equation} \tag{2.13} $$

Estimate (2.13) follows from (2.9)(2.11) since $|x-y|>\frac{1}{2}\max(x,y)$ for $x>2y$ $(y>2x)$.

Lemma 4. If $x\in[{2}/{\theta_n},{\theta_n}/{2}]$, $y\in[{1}/{\theta_n},{3\theta_n}/{4}]$ and $|x-y|\geqslant\sqrt{{x}/{\theta_n}}$, then

$$ \begin{equation} e^{-(x+y)/2}|\mathcal{K}_{n,N}^\alpha(x,y)|\leqslant \frac{c(\alpha,\lambda)(xy)^{-{\alpha}/{2}-1/4}(x+y)}{\sqrt{n}(x-y)^2}. \end{equation} \tag{2.14} $$

Proof. From (2.9) and (2.11) we obtain
$$ \begin{equation*} \begin{aligned} \, &e^{-(x+y)/2}|\mathcal{K}_{n,N}^\alpha(x,y)|\leqslant c(\alpha,\lambda) \frac{(xy)^{-\alpha/2-1/4}}{\sqrt{n}(x-y)^2}\biggl[x+y+\sqrt{\frac{x}{n}}\biggl(\frac{x}{|x-y|}+1\biggr) \\ &\qquad +\sqrt{\frac{y}{n}}\biggl(\frac{y}{|x-y|}+1\biggr) +\frac{xy}{n}\biggl(\frac{1}{|x-y|}+1\biggr)\biggl(\sqrt{\frac{n}{x}}+\sqrt{\frac{n}{y}}\biggr)+2\sqrt{xy}\biggr]. \end{aligned} \end{equation*} \notag $$
Now estimate (2.14) follows from the condition $|x-y|\geqslant\sqrt{{x}/{\theta_n}}$.

Lemma 5. If ${\theta_n}/{4}\leqslant x,y\leqslant {7\theta_n}/{2}$ and $|x-y|>1$, then

$$ \begin{equation*} e^{-(x+y)/2}|\mathcal{K}_{n,N}^\alpha(x,y)|\leqslant \frac{c(\alpha,\lambda)\theta_n^{-\alpha}}{|x-y|^{3/2}}. \end{equation*} \notag $$

§ 3. Estimate for the Lebesgue function

Consider the sum

$$ \begin{equation} \Lambda_{n,m}^{\alpha}(x)=x^{\alpha/2+1/4}\delta\sum_{t\in\Omega_{\delta}}t^{\alpha/2-1/4} e^{-(x+t)/2}|V_{n+m,N}^\alpha(x,t)|, \end{equation} \tag{3.1} $$
where
$$ \begin{equation*} V_{n+m,N}^\alpha(x,y)=\frac{1}{m+1}\sum_{k=n}^{n+m}K_{k,N}^\alpha(x,y). \end{equation*} \notag $$
Let us estimate the behaviour of $\Lambda_{n,m}^{\alpha}(x)$ for $\alpha\geqslant0$.

Let $x\in[0,{2}/{\theta_n}]$, $\theta_n=4n+2\alpha+2$. Then

$$ \begin{equation} \Lambda_{n,m}^{\alpha}(x)=x^{\alpha/2+1/4}\delta \biggl[\sum_{t\in B_1}+\sum_{t\in B_2}\biggr]t^{\alpha/2-1/4} e^{-(x+t)/2}|V_{n+m,N}^\alpha(x,t)|=I_1+I_2, \end{equation} \tag{3.2} $$
where $B_1=[0,4/\theta_n]\cap\Omega_{\delta}$ and $B_2=(4/\theta_n,\infty)\cap\Omega_{\delta}$. Let us estimate $I_1$. From (5.13) and (5.12) we obtain
$$ \begin{equation} \begin{aligned} \, \notag I_1 &\leqslant x^{\alpha/2+1/4}\delta\sum_{t\in B_1} t^{\alpha/2-1/4}\frac{e^{-(x+t)/2}}{m+1} \sum_{k=n}^{n+m}\sum_{j=0}^{k}m_{j,N}^\alpha(x)m_{j,N}^\alpha(t) \\ \notag &\leqslant c(\alpha,\lambda)\frac{x^{\alpha/2+1/4}}{m+1}\delta\sum_{t\in B_1} t^{\alpha/2-1/4}\sum_{k=n}^{n+m}\sum_{j=0}^{k}\theta_j^\alpha \\ &\leqslant c(\alpha,\lambda,a,b)\frac{x^{\alpha/2+1/4}\theta_{n+m}^{\alpha+2}}{m+1} \biggl(\frac{4}{\theta_n}\biggr)^{\alpha/2+3/4} \leqslant c(\alpha,\lambda,a,b). \end{aligned} \end{equation} \tag{3.3} $$
Now we estimate $I_2$. We note first that
$$ \begin{equation} \begin{aligned} \, \notag V_{n+m,N}^\alpha(x,t) &=\frac{1}{m+1}\sum_{k=n}^{n+m}K_{k,N}^\alpha(x,t) \\ &=\frac{n+m+1}{m+1}\mathcal K_{n+m+1,N}^\alpha(x,t)-\frac{n}{m+1}\mathcal K_{n,N}^\alpha(x,t). \end{aligned} \end{equation} \tag{3.4} $$
As a result,
$$ \begin{equation} \begin{aligned} \, \notag I_2 &\leqslant c(b) x^{\alpha/2+1/4}\delta\sum_{t\in B_2}t^{\alpha/2-1/4} e^{-(x+t)/2}|\mathcal K_{n+m+1,N}^\alpha(x,t)| \\ &\qquad +c(a)x^{\alpha/2+1/4}\delta\sum_{t\in B_2}t^{\alpha/2-1/4} e^{-(x+t)/2}|\mathcal K_{n,N}^\alpha(x,t)|=I_{21}+I_{22}. \end{aligned} \end{equation} \tag{3.5} $$
We estimate $I_{21}$ ($I_{22}$ is estimated similarly). Let $B_3=(4/\theta_n,\theta_{n+m+1}/2)\cap\Omega_{\delta}$. Then
$$ \begin{equation} I_{21}=c(b) x^{\alpha/2+1/4}\delta \biggl[\sum_{t\in B_3}+\sum_{t\in B_2\setminus B_3}\biggr]t^{\alpha/2-1/4} e^{-(x+t)/2}|\mathcal K_{n+m+1,N}^\alpha(x,t)|= I_{21}^1+I_{21}^2. \end{equation} \tag{3.6} $$
From Lemmas 2 and 3 and equality (5.12) we obtain
$$ \begin{equation} \nonumber I_{21}^1 \leqslant c(\alpha,\lambda,b)x^{\alpha/2+1/4}\theta_{n+m+1}^{-\alpha}A_{n+m+1}^\alpha(x) \delta\sum_{t\in B_3}\frac{t^{\alpha/2-1/4}A_{n+m+1}^\alpha(t)}{\max(x,t)} \end{equation} \notag $$
$$ \begin{equation} \leqslant c(\alpha,\lambda,a,b)x^{\alpha/2+1/4}\theta_{n+m+1}^{\alpha/2-1/4} \delta\sum_{t\in B_3}t^{-3/2}\leqslant c(\alpha,\lambda,a,b), \end{equation} \tag{3.7} $$
$$ \begin{equation} \nonumber I_{21}^2 \leqslant c(\alpha,\lambda,a,b)x^{\alpha/2+1/4}\theta_{n+m+1}^{-\alpha-1}A_{n+m+1}^\alpha(x) \delta\sum_{t\in B_2\setminus B_3}t^{\alpha/2-1/4}A_{n+m+1}^\alpha(t) \end{equation} \notag $$
$$ \begin{equation} \leqslant c(\alpha,\lambda,a,b)\theta_{n+m+1}^{-\alpha/2-5/4} \biggl(\frac{\theta_{n+m+1}^{\alpha/2+3/4}}{\theta_{n+m+1}^{1/3}}+e^{-3n/4}\biggr)= \frac{c(\alpha,\lambda,a,b)}{\theta_{n+m+1}^{5/6}}. \end{equation} \tag{3.8} $$
Now an appeal to (3.2)(3.8) shows that
$$ \begin{equation*} \Lambda_{n,m}^{\alpha}(x)\leqslant c(\alpha,\lambda,a,b), \qquad x\in\biggl[0,\frac{2}{\theta_n}\biggr]. \end{equation*} \notag $$

Now let $x\in[2/\theta_{n}, \theta_{n+m+1}/2]$. Using equality (3.4), we have

$$ \begin{equation*} \begin{aligned} \, \Lambda_{n,m}^{\alpha}(x) &\leqslant c(b) x^{\alpha/2+1/4}\delta\sum_{t\in \Omega_\delta}t^{\alpha/2-1/4} e^{-(x+t)/2}|\mathcal K_{n+m+1,N}^\alpha(x,t)| \\ &\qquad +c(a)x^{\alpha/2+1/4}\delta\sum_{t\in \Omega_\delta}t^{\alpha/2-1/4} e^{-(x+t)/2}|\mathcal K_{n,N}^\alpha(x,t)|=J_{1}+J_{2}. \end{aligned} \end{equation*} \notag $$
Let us estimate $J_{1}$ alone. To this end we set
$$ \begin{equation*} \begin{gathered} \, D_1=\biggl[0,x-\sqrt{\frac{x}{\theta_{n+m+1}}}\biggr]\cap\Omega_\delta, \qquad D_2=\biggl(x-\sqrt{\frac{x}{\theta_{n+m+1}}},x+\sqrt{\frac{x}{\theta_{n+m+1}}}\biggr)\cap\Omega_\delta, \\ D_3=\biggl(x+\sqrt{\frac{x}{\theta_{n+m+1}}},\frac{3\theta_{n+m+1}}4\biggr]\cap\Omega_\delta\quad\text{and} \quad D_4=\biggl(\frac{3\theta_{n+m+1}}4,\infty\biggr)\cap\Omega_\delta. \end{gathered} \end{equation*} \notag $$
In view of this notation, we can write $J_1$ as a sum:
$$ \begin{equation} J_1=J_{11}+J_{12}+J_{13}+J_{14}, \end{equation} \tag{3.9} $$
where
$$ \begin{equation*} J_{1i}=c(b) x^{\alpha/2+1/4}\delta\sum_{t\in D_i}t^{\alpha/2-1/4} e^{-(x+t)/2}|\mathcal K_{n+m+1,N}^\alpha(x,t)|, \qquad i=1,2,3,4. \end{equation*} \notag $$
We estimate $J_{12}$. By Lemma 7 we have
$$ \begin{equation} \begin{aligned} \, \notag J_{12} &\leqslant\frac{c(a,b)x^{\alpha/2+1/4}}{n+m+1}\,\delta\sum_{t\in D_2}t^{\alpha/2-1/4} e^{-(x+t)/2}K_{0,N}^\alpha(x,t) \\ \notag &\qquad +\frac{c(a,b) x^{\alpha/2+1/4}}{n+m+1}\,\delta \\ \notag &\qquad\qquad\times\sum_{t\in D_2}t^{\alpha/2-1/4} e^{-(x+t)/2}\sum_{k=1}^{n+m}(K_{k,N}^\alpha(x,x))^{1/2}(K_{k,N}^\alpha(t,t))^{1/2} \\ \notag &\leqslant c(\alpha, a,b)\frac{x^{\alpha/2+1/4}}{n+m+1}\, e^{-x}x^{\alpha/2+3/4} \\ \notag &\qquad +\frac{c(\alpha,\lambda,a,b) x^{\alpha/2+1/4}}{n+m+1}\,\delta \\ \notag &\qquad\qquad\times\sum_{t\in D_2}t^{\alpha/2-1/4} \sum_{k=1}^{n+m}k^{1-\alpha}\theta_k^{\alpha/2-1/4}x^{-\alpha/2-1/4} \theta_k^{\alpha/2-1/4}t^{-\alpha/2-1/4} \\ &\leqslant \frac{c(\alpha, a,b)}{n+m+1}+c(\alpha,\lambda,a,b)(n+m)^{1/2}x^{-1/2}\sqrt{\frac{x}{\theta_{n+m+1}}}\leqslant c(\alpha,\lambda,a,b). \end{aligned} \end{equation} \tag{3.10} $$
To estimate $J_{13}$ we set
$$ \begin{equation*} D_3^1=\biggl(x+\sqrt{\frac{x}{\theta_{n+m+1}}},2x\biggr]\cap\Omega_\delta\quad\text{and} \quad D_3^2=\biggl(2x,\frac{3\theta_{n+m+1}}4\biggr]\cap\Omega_\delta. \end{equation*} \notag $$
Note that $t-x\geqslant\sqrt{x/\theta_{n+m+1}}$ for $x\in[2/\theta_{n},\theta_{n+m+1}/2]$ and $t\in D_3$. Now, by Lemma 4
$$ \begin{equation} \begin{aligned} \, \notag J_{13} &\leqslant \frac{c(\alpha,\lambda,a,b)}{\sqrt{n+m+1}}\, \delta\sum_{t\in D_3}\frac{t^{-1/2}(x+t)}{(x-t)^2} \\ \notag &\leqslant \frac{c(\alpha,\lambda,a,b)}{\sqrt{n+m+1}}\sqrt{x}\, \delta\sum_{t\in D_3^1}\frac{1}{(t-x)^2} +\frac{c(\alpha,\lambda,a,b)}{\sqrt{n+m+1}}\, \delta\sum_{t\in D_3^2}\frac{\sqrt{t}}{(t-x)^2} \\ &\leqslant \frac{c(\alpha,\lambda,a,b)}{\sqrt{n+m+1}}\biggl(\sqrt{x} \sqrt{\frac{\theta_{n+m+1}}{x}}+c(\alpha)\delta\sum_{t\in D_3^2}t^{-3/2}\biggr)\leqslant c(\alpha,\lambda,a,b). \end{aligned} \end{equation} \tag{3.11} $$
A similar argument shows that
$$ \begin{equation} J_{11}\leqslant c(\alpha,\lambda,a,b). \end{equation} \tag{3.12} $$
Next we estimate $J_{14}$. Setting
$$ \begin{equation*} D_4^1=\biggl(\frac{3\theta_{n+m+1}}4,\frac{3\theta_{n+m+1}}2\biggr]\cap\Omega_\delta, \qquad D_4^2=\biggl(\frac{3\theta_{n+m+1}}2,\infty\biggr)\cap\Omega_\delta, \end{equation*} \notag $$
it follows from Lemma 2 that
$$ \begin{equation} \begin{aligned} \, \notag J_{14} &\leqslant c(\alpha,\lambda,a,b) x^{\alpha/2+1/4}\theta_{n+m+1}^{-(\alpha+1)}A_{n+m+1}^\alpha(x)\delta\sum_{t\in D_4}t^{\alpha/2-1/4} A_{n+m+1}^\alpha(t) \\ &\leqslant c(\alpha,\lambda,a,b)\theta_{n+m+1}^{-\alpha/2-5/4}\delta\biggl(\sum_{t\in D_4^1}\frac{t^{\alpha/2-1/4}} {\theta_{n+m+1}^{1/3}}+\sum_{t\in D_4^2}t^{\alpha/2-1/4}e^{-t/4}\biggr)\leqslant \frac{c(\alpha,\lambda,a,b)}{\theta_{n+m+1}^{5/6}}. \end{aligned} \end{equation} \tag{3.13} $$

From (3.9)(3.13) we obtain

$$ \begin{equation*} J_1\leqslant c(\alpha,\lambda,a,b). \end{equation*} \notag $$
A similar estimate holds for $J_2$, and therefore
$$ \begin{equation*} \Lambda_{n,m}^{\alpha}(x)\leqslant c(\alpha,\lambda,a,b), \qquad x\in\biggl[\frac{2}{\theta_{n}}, \frac{\theta_{n+m+1}}{2}\biggr]. \end{equation*} \notag $$

Consider the case $x\in(\theta_{n+m+1}/2, 3\theta_{n+m+1}/2]$. For $J_1$ we have

$$ \begin{equation} J_1=H_1+H_2+H_3+H_4+H_5, \end{equation} \tag{3.14} $$
where
$$ \begin{equation*} \begin{gathered} \, H_i=c(a,b) x^{\alpha/2+1/4}\delta\sum_{t\in G_i}t^{\alpha/2-1/4} e^{-(x+t)/2}|\mathcal K_{n+m+1,N}^\alpha(x,t)|, \qquad i=1,2,3,4,5, \\ G_1=\biggl[0,x-\frac{\theta_{n+m+1}}4\biggr]\cap\Omega_\delta, \qquad G_2=\biggl(x-\frac{\theta_{n+m+1}}4,x-1\biggr)\cap\Omega_\delta, \\ G_3=[x-1,x+1]\cap\Omega_\delta, \qquad G_4=\biggl(x+1,x+\frac{\theta_{n+m+1}}4\biggr)\cap\Omega_\delta \\ \text{and}\quad G_5=\biggl[x+\frac{\theta_{n+m+1}}4,\infty\biggr)\cap\Omega_\delta. \end{gathered} \end{equation*} \notag $$
For $H_3$ estimate (3.10) holds. As concerns, $H_1$ and $H_5$, by Lemma 2 and equality (5.12) we have
$$ \begin{equation*} \begin{aligned} \, H_1 &\leqslant \frac{c(\alpha,\lambda,a,b)x^{\alpha/2+1/4}} {\theta_{n+m+1}^{\alpha+5/4}(\theta_{n+m+1}^{1/3}+ |x-\theta_{n+m+1}|)^{1/4}}\delta\sum_{t\in G_1}t^{\alpha/2-1/4}A_{n+m+1}^\alpha(t) \\ &\leqslant \frac{c(\alpha,\lambda,a,b)}{\theta_{n+m+1}^{\alpha/2+1}\theta_{n+m+1}^{1/12}} \bigl(\theta_{n+m+1}^{\alpha/2-3/4}+\theta_{n+m+1}^{\alpha/2+1/4}\bigr)\leqslant \frac{c(\alpha,\lambda,a,b)}{\theta_{n+m+1}^{5/6}} \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} \begin{aligned} \, H_5 &\leqslant \frac{c(\alpha,\lambda,a,b)}{\theta_{n+m+1}^{\alpha/2+13/12}} \delta\sum_{t\in G_5}t^{\alpha/2-1/4}A_{n+m+1}^\alpha(t) \\ &\leqslant \frac{c(\alpha,\lambda,a,b)}{n^{\alpha/2+13/12}} \biggl(\frac{1}{\theta_{n+m+1}^{1/3}}\theta_{n+m+1}^{\alpha/2+3/4}+ \frac{1}{e^{3n/4}}\biggr) \leqslant \frac{c(\alpha,\lambda,a,b)}{\theta_{n+m+1}^{2/3}}. \end{aligned} \end{equation*} \notag $$
In view of Lemma 5, for $H_2$ and $H_4$ we have
$$ \begin{equation*} \begin{aligned} \, H_2 &\leqslant c(\alpha,\lambda,a,b)x^{\alpha/2+1/4}\delta\sum_{t\in G_2}t^{\alpha/2-1/4} \frac{\theta_{n+m+1}^{-\alpha}}{(x-t)^{3/2}} \\ &\leqslant c(\alpha,\lambda,a,b)\delta\sum_{t\in G_2}(x-t)^{-3/2}\leqslant c(\alpha,\lambda,a,b) \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} H_4\leqslant c(\alpha,\lambda,a,b)\delta\sum_{t\in G_4}(t-x)^{-3/2}\leqslant c(\alpha,\lambda,a,b). \end{equation*} \notag $$
From the estimates for $H_i$ and equality (3.14) we obtain
$$ \begin{equation*} J_1\leqslant c(\alpha,\lambda,a,b). \end{equation*} \notag $$
Therefore,
$$ \begin{equation*} \Lambda_{n,m}^\alpha(x)\leqslant c(\alpha,\lambda,a,b), \qquad x\in\biggl(\frac{\theta_{n+m+1}}{2},\frac{3\theta_{n+m+1}}{2}\biggr]. \end{equation*} \notag $$

Let $x\in(3\theta_{n+m+1}/2,\infty)$. In this case

$$ \begin{equation*} \Lambda_{n,m}^{\alpha}(x)\leqslant \frac{x^{\alpha/2+1/4}}{m+1}\, \delta\sum_{t\in \Omega_\delta}t^{\alpha/2-1/4} e^{-(x+t)/2}\sum_{k=n}^{n+m}(K_{k,N}^\alpha(x,x))^{1/2} (K_{k,N}^\alpha(t,t))^{1/2}. \end{equation*} \notag $$
By Lemma 7
$$ \begin{equation*} \Lambda_{n,m}^{\alpha}(x)\leqslant c(\alpha,\lambda)\frac{x^{\alpha/2+1/4}}{m+1}\, e^{-x/4} \delta\sum_{t\in \Omega_\delta}t^{\alpha/2-1/4}e^{-t/2}\sum_{k=n}^{n+m}k^{1/2-\alpha/2} (K_{k,N}^\alpha(t,t))^{1/2}. \end{equation*} \notag $$
Setting
$$ \begin{equation*} \begin{gathered} \, E_1=\biggl[0,\frac{1}{\theta_{n}}\biggr]\cap\Omega_\delta, \qquad E_2=\biggl(\frac1{\theta_{n}},\frac{\theta_{n+m}}2\biggr]\cap\Omega_\delta, \\ E_3=\biggl(\frac{\theta_{n+m}}2,\frac{3\theta_{n+m}}2\biggr]\cap\Omega_\delta\quad\text{and} \quad E_4=\biggl(\frac{3\theta_{n+m}}2,\infty\biggr)\cap\Omega_\delta, \end{gathered} \end{equation*} \notag $$
we have
$$ \begin{equation} \Lambda_{n,m}^{\alpha}(x)\leqslant c(\alpha,\lambda)\frac{x^{\alpha/2+1/4}}{m+1}e^{-x/4}(W_1+W_2+W_3+W_4), \end{equation} \tag{3.15} $$
where
$$ \begin{equation*} \begin{aligned} \, W_1 &\leqslant c(\alpha,\lambda)\delta\sum_{t\in E_1}t^{\alpha/2-1/4} \sum_{k=n}^{n+m}k^{1-\alpha}\theta_k^\alpha\leqslant c(\alpha,\lambda)\frac{(n+m)^2}{\theta_n^{\alpha/2+3/4}}\leqslant \frac{c(\alpha,\lambda,a,b)}{n^{\alpha/2-5/4}}, \\ W_2 &\leqslant c(\alpha,\lambda)\delta\sum_{t\in E_2} t^{\alpha/2-1/4}\sum_{k=n}^{n+m}k^{1-\alpha}\theta_k^{\alpha/2-1/4} t^{-\alpha/2-1/4}\leqslant \frac{c(\alpha,\lambda,a,b)}{n^{\alpha/2-9/4}}, \\ W_3 &\leqslant c(\alpha,\lambda)\delta\sum_{t\in E_3} t^{\alpha/2-1/4}\sum_{k=n}^{n+m}k^{1/2-\alpha/2}k^{-\alpha/2}\leqslant \frac{c(\alpha,\lambda,a,b)}{n^{\alpha/2-9/4}} \end{aligned} \end{equation*} \notag $$
and
$$ \begin{equation*} W_4\leqslant c(\alpha,\lambda)\delta\sum_{t\in E_4} t^{\alpha/2-1/4}\sum_{k=n}^{n+m}k^{1-\alpha}e^{-t/4}\leqslant \frac{c(\alpha,\lambda,a,b)}{n^{\alpha-2}}e^{-3n/4}. \end{equation*} \notag $$
Now from (3.15) and the estimates for the $W_i$ $(i=1,2,3,4)$ we obtain
$$ \begin{equation*} \Lambda_{n,m}^{\alpha}(x)\leqslant c(\alpha,\lambda,a,b), \qquad x\in \biggl(\frac{3\theta_{n+m+1}}{2},\infty\biggr). \end{equation*} \notag $$

§ 4. Approximation properties of de la Vallée Poussin means for $\alpha=0$

Let $q_{n+r}(x)$ be an algebraic polynomial of degree $n+r$ such that $\Delta_\delta^i f(0)=\Delta_\delta^i q_{n+r}(0)$, $i=0,\dots, r-1$. From (1.8) and (1.11) we obtain

$$ \begin{equation*} f(x)-\mathcal V_{n+m+r}(f,x)=f(x)-q_{n+r}(x)+\mathcal V_{n+m+r}(q_{n+r}-f,x). \end{equation*} \notag $$
Since
$$ \begin{equation*} \sum_{k=0}^{r-1}\Delta_\delta^k(q_{n+r}(0)-f(0))\frac{(Nx)^{[k]}}{k!}=0, \end{equation*} \notag $$
it follows from (1.6) that
$$ \begin{equation*} \begin{aligned} \, &\mathcal V_{n+m+r}(q_{n+r}-f,x) =\frac{1}{m+1}\sum_{k=n}^{m+n}S_{k+r,N}^{0,r}(q_{n+r}-f,x) \\ &\qquad=\frac{(Nx)^{[r]}}{m+1}\sum_{k=n}^{n+m}\sum_{j=0}^{k}\frac{m^{r}_{j,N}(x-r\delta)}{\sqrt{(j+r)^{[r]}}} \sum_{t\in\Omega_{\delta}}\Delta_\delta^r(q_{n+r}(t)-f(t))e^{-t}(1-e^{-\delta})m_{j,N}^0(t). \end{aligned} \end{equation*} \notag $$
Applying the Abel transform to the inner sum (and using equalities (5.1) and (5.9)), we get that
$$ \begin{equation*} \begin{aligned} \, &\sum_{t\in\Omega_{\delta}}\Delta_\delta^r(q_{n+r}(t)-f(t))e^{-t}(1-e^{-\delta})m_{j,N}^0(t) \\ &\qquad =(-1)^r(1-e^{-\delta})\sum_{t\in\Omega_{\delta}}(q_{n+r}(t+r\delta)-f(t+r\delta)) \frac{\sqrt{e^{j\delta}}}{j!}\, \Delta_\delta^{j+r}\biggl\{\frac{\Gamma(Nt+1)e^{-t}}{\Gamma(Nt-j+1)}\biggr\} \\ &\qquad =(-1)^r\frac{1-e^{-\delta}}{\sqrt{e^{j\delta}}}\frac{(j+r)!}{j!}\sum_{t\in\Omega_{r,\delta}} (q_{n+r}(t)-f(t))\frac{\Gamma(Nt-r+1)}{\Gamma(Nt+1)}\, e^{-t}M_{j+r,N}^{-r}(t) \\ &\qquad =\frac{(e^{\delta}-1)^{r+1}}{e^\delta}\sum_{t\in\Omega_{r,\delta}}(q_{n+r}(t)-f(t))e^{-t}\sqrt{(j+r)^{[r]}} \, m_{j,N}^{r}(t-r\delta). \end{aligned} \end{equation*} \notag $$
Consequently,
$$ \begin{equation*} \begin{aligned} \, &\mathcal V_{n+m+r}(q_{n+r}-f,x) \\ &\qquad =\frac{(e^{\delta}-1)^{r+1}}{e^\delta}(Nx)^{[r]}\sum_{t\in\Omega_{r,\delta}}(q_{n+r}(t)-f(t))e^{-y}V_{n+m}^r(x-r\delta,t-r\delta). \end{aligned} \end{equation*} \notag $$

Thus, for $x\in\Omega_{r,\delta}$ we have

$$ \begin{equation*} \begin{aligned} \, &e^{-x/2}x^{-r/2+1/4}\bigl|f(x)-\mathcal V_{n+m+r}(f,x)\bigr|\leqslant E_{n+r}^r(f,\delta) \\ &\qquad +c(r)E_{n+r}^r(f,\delta)x^{r/2+1/4}\delta\sum_{t\in\Omega_{r,\delta}} t^{r/2-1/4}e^{-(x+t)/2}|V_{n+m}^r(x-r\delta,t-r\delta)|. \end{aligned} \end{equation*} \notag $$
An appeal to (3.1) shows that
$$ \begin{equation*} e^{-x/2}x^{-r/2+1/4}\bigl|f(x)-\mathcal V_{n+m+r}(f,x)\bigr| \leqslant \bigl(1+c(r)\Lambda_{n,m}^r(x)\bigr)E_{n+r}^r(f,\delta). \end{equation*} \notag $$
Now by Theorem 1 we have the estimate
$$ \begin{equation} e^{-x/2}x^{-r/2+1/4}\bigl|f(x)-\mathcal V_{n+m+r}(f,x)\bigr|\leqslant c(r,\lambda,a,b)E_{n+r}^r(f,\delta). \end{equation} \tag{4.1} $$
Next, from (1.9) we obtain
$$ \begin{equation*} \Delta_\delta^{l}\mathcal V_{n+m+r}(f,x)=\mathcal V_{n+m+r-l}(\Delta_\delta^{l}f,x), \qquad l=0,\dots,r-1. \end{equation*} \notag $$
As a result, (1.12) follows from this equality and (4.1).

§ 5. Appendix. Some properties of Meixner polynomials

In this section we recall some properties of the polynomials $M_{n,N}^{\alpha}(x)$ from [2]:

$\bullet$ Rodrigues’s formula

$$ \begin{equation} M_{n,N}^{\alpha}(x)=\frac{\Gamma(Nx+1)e^{n\delta+x}}{n!\,\Gamma(Nx+\alpha+1)} \Delta^n_\delta\biggl\{\frac{\Gamma(Nx+\alpha+1)} {\Gamma(Nx-n+1)}\, e^{-x}\biggr\}; \end{equation} \tag{5.1} $$

$\bullet$ the explicit representation

$$ \begin{equation} M_{n,N}^\alpha(x)=\binom{n+\alpha}{n}\sum_{k=0}^n\frac{n^{[k]}(Nx)^{[k]}}{(\alpha+1)_kk!}(1-e^\delta)^k; \end{equation} \tag{5.2} $$

$\bullet$ the orthogonality relation

$$ \begin{equation*} \sum_{x\in\Omega_\delta}M_{n,N}^\alpha(x)M_{m,N}^\alpha(x)\rho_N(x)=h_n^\alpha\delta_{nm}, \qquad \alpha>-1; \end{equation*} \notag $$

$\bullet$ the recurrence relation

$$ \begin{equation} \begin{aligned} \, \notag M_{n+1,N}^\alpha(x) &=\frac{n(e^{-\delta}+1)+e^{-\delta}(\alpha+1)+(e^{-\delta}-1)Nx}{(n+1)e^{-\delta}}M_{n,N}^\alpha(x) \\ &\qquad -\frac{n+\alpha}{(n+1)e^{-\delta}}M_{n-1,N}^\alpha(x), \end{aligned} \end{equation} \tag{5.3} $$
where $M_{0,N}^\alpha(x)=1$ and $M_{1,N}^\alpha(x)=(1-e^\delta) Nx+\alpha+1$;

$\bullet$ the fundamental equalities

$$ \begin{equation} \Delta_\delta^r M_{n,N}^{\alpha}(x)=(1-e^{\delta})^rM_{n-r,N}^{\alpha+r}(x), \end{equation} \tag{5.4} $$
$$ \begin{equation} (1-e^{\delta})NxM_{n,N}^{\alpha+1}(x-\delta)=(n+\alpha+1)M_{n,N}^{\alpha}(x)-(n+1)M_{n+1,N}^{\alpha}(x), \end{equation} \tag{5.5} $$
$$ \begin{equation} M_{n-1,N}^{\alpha}(x)=M_{n,N}^\alpha(x)-M_{n,N}^{\alpha-1}(x), \end{equation} \tag{5.6} $$
$$ \begin{equation} e^\delta M_{n-2,N}^{\alpha}(x-\delta)=M_{n-1,N}^\alpha(x-\delta)-M_{n-1,N}^{\alpha-1}(x), \end{equation} \tag{5.7} $$
$$ \begin{equation} M_{n,N}^{\alpha-1}(x)=\frac{\alpha}{n+\alpha}M_{n,N}^\alpha(x) -\frac{(e^\delta-1)Nx}{n+\alpha}M_{n-1,N}^{\alpha+1}(x-\delta) \end{equation} \tag{5.8} $$
and
$$ \begin{equation} M^{-l}_{n,N}(x)=\frac{(n-l)!}{n!}(e^\delta-1)^l(-Nx)_lM_{n-l,N}^l(x-l\delta), \qquad 1\leqslant l\leqslant n; \end{equation} \tag{5.9} $$

$\bullet$ the Christoffel–Darboux formula

$$ \begin{equation} \begin{aligned} \, \notag &K_{n,N}^{\alpha}(x,y) =\sum_{k=0}^n m_{k,N}^{\alpha}(x)m_{k,N}^{\alpha}(y) \\ &\quad=\frac{\delta}{(e^{\delta}-1)e^{n\delta}}\frac{(n+1)!}{\Gamma(n+\alpha+1)} \frac{M_{n,N}^\alpha(x)M_{n+1,N}^\alpha(y)-M_{n+1,N}^\alpha(x)M_{n,N}^\alpha(y)}{x-y}. \end{aligned} \end{equation} \tag{5.10} $$

For some asymptotic properties of the polynomials $m_{n,N}^\alpha(x)$, see [2], p. 197. In particular, the following asymptotic formula holds for $\alpha>-1$ and $x\in[0,\infty)$:

$$ \begin{equation} m_{n,N}^\alpha(x)=l_n^\alpha(x)+\upsilon_{n,N}^\alpha(x), \end{equation} \tag{5.11} $$
where $l_n^\alpha(x)$ is the normalized Laguerre polynomial of degree $n$. For the remainder term $\upsilon_{n,N}^\alpha(x)$, for $n/N\leqslant \lambda$ we have the estimate
$$ \begin{equation*} e^{-x/2}|\upsilon_{n,N}^\alpha(x)|\leqslant c(\alpha,\lambda)A_n^\alpha(x)\sqrt{\frac{n}{N}}n^{-\alpha/2}, \end{equation*} \notag $$
where
$$ \begin{equation} A_n^\alpha(x)=\begin{cases} \theta_n^{\alpha},& 0\leqslant x\leqslant \dfrac{1}{\theta_n}, \\ \theta_n^{\alpha/2-1/4}x^{-\alpha/2-1/4},& \dfrac{1}{\theta_n}<x\leqslant \dfrac{\theta_n}{2}, \\ \bigl[\theta_n(\theta_n^{1/3}+|x-\theta_n|)\bigr]^{-1/4},& \dfrac{\theta_n}{2}<x\leqslant\dfrac{3\theta_n}{2}, \\ e^{-x/4}, & \dfrac{3\theta_n}{2}<x<\infty, \end{cases} \end{equation} \tag{5.12} $$
and $\theta_n=4n+2\alpha+2$. The weighed estimates
$$ \begin{equation} e^{-x/2}\bigl|m_{n,N}^\alpha(x\pm s\delta)\bigr|\leqslant c(\alpha,\lambda,s)\theta_n^{-\alpha/2}A_n^\alpha(x) \end{equation} \tag{5.13} $$
and
$$ \begin{equation} e^{-x/2}\bigl|M_{n,N}^\alpha(x\pm s\delta)\bigr|\leqslant c(\alpha,\lambda,s)A_n^\alpha(x), \end{equation} \tag{5.14} $$
where $s\geqslant0$, were obtained in [2] on the basis of an estimate for Laguerre polynomials and the asymptotic formula (5.11).

The following results hold.

Lemma 6 [30]. Let $0\leqslant l$ be an integer, and let $r\in\mathbb{N}$, $l\leqslant r$. Then

$$ \begin{equation} \Delta^l_\delta\bigl((Nx)^{[r]}M^r_{n,N}(x-r\delta)\bigr)=(n-l+r+1)_l(Nx)^{[r-l]}M^{r-l}_{n,N}(x-(r-l)\delta). \end{equation} \tag{5.15} $$

Lemma 7 [32]. Let $-1<\alpha\in\mathbb{R}$, $\theta_n=4n+2\alpha+2$, $\lambda>0$ and $N=1/\delta$, $0<\delta\leqslant1$. Then, for $1\leqslant n\leqslant \lambda N$,

$$ \begin{equation*} e^{-x}K_{n,N}^\alpha(x,x)\leqslant c(\alpha,\lambda) \begin{cases} n^{1-\alpha}(A_n^\alpha(x))^2, & x\in\biggl[0,\dfrac{\theta_n}{2}\biggr]\cup\biggl[\dfrac{3\theta_n}{2},\infty\biggr), \\ n^{-\alpha}, & x\in\biggl[\dfrac{\theta_n}{2},\dfrac{3\theta_n}{2}\biggr]. \end{cases} \end{equation*} \notag $$

Acknowledgement

The author is grateful to the referee for their useful comments and suggestions.


Bibliography

1. A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer Ser. Comput. Phys., Springer-Verlag, Berlin, 1991, xvi+374 pp.  crossref  mathscinet  mathscinet  zmath  zmath
2. I. I. Sharapudinov, Polynomials orthogonal on grids. Theory and applications, Daghestan Pedagogical University publishing house, Makhachkala, 1997, 252 pp. (Russian)
3. J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion”, J. London Math. Soc., 9:1 (1934), 6–13  crossref  mathscinet  zmath
4. V. P. Perov, Applied spectral estimation theory, Nauka, Moscow, 1982, 432 pp. (Russian)  mathscinet
5. D. R. Gilmin, R. G. Keys and M. S. Keener, “The mean-square error for a recursive moving polynomial predictor”, IEEE Trans. Syst. Man Cybern., 9:5 (1979), 301–304  crossref  zmath
6. I. I. Sharapudinov, “The use of Meixner multinomials in the approximate calculation of integrals”, Soviet Math. (Izv. VUZ), 30:2 (1986), 120–122  mathnet  mathscinet  zmath
7. I. I. Sharapudinov, “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$”, Math. Notes, 62:4 (1997), 501–512  mathnet  crossref  mathscinet  zmath
8. V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561  mathnet  crossref  mathscinet  zmath  adsnasa
9. X. S. Wang and R. Wong, “Global asymptotics of the Meixner polynomials”, Asymptot. Anal., 75:3–4 (2011), 211–231  crossref  mathscinet  zmath
10. A. I. Aptekarev and D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012 (2012), 67–106  mathnet  crossref  mathscinet  zmath
11. A. Aptekarev and J. Arvesú, “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505  crossref  mathscinet  zmath
12. A. A. Gonchar and E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130  mathnet  crossref  mathscinet  zmath  adsnasa
13. A. A. Gonchar and E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184  mathnet  crossref  mathscinet  zmath  adsnasa
14. E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228  mathnet  crossref  mathscinet  zmath  adsnasa
15. P. Barry, P. M. Rajković and M. D. Petković, “An application of Sobolev orthogonal polynomials to the computation of a special Hankel determinant”, Approximation and computation, Springer Optim. Appl., 42, Springer, New York, 2011, 53–60  crossref  mathscinet  zmath
16. B. P. Osilenker, “On Fourier series in generalized eigenfunctions of a discrete Sturm–Liouville operator”, Funct. Anal. Appl., 52:2 (2018), 154–157  mathnet  crossref  mathscinet  zmath
17. T. Kilpeläinen, “Weighted Sobolev spaces and capacity”, Ann. Acad. Sci. Fenn. Ser. A I Math., 19:1 (1994), 95–113  mathscinet  zmath
18. F. Marcellán and Yuan Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352  crossref  mathscinet  zmath
19. I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733  mathnet  crossref  mathscinet  zmath  adsnasa
20. L. Fernández, F. Marcellán, T. E. Pérez and M. A. Piñar, “Sobolev orthogonal polynomials and spectral methods in boundary value problems”, Appl. Numer. Math., 200 (2024), 254–272  crossref  mathscinet  zmath
21. H. Bavinck and H. van Haeringen, “Difference equations for generalized Meixner polynomials”, J. Math. Anal. Appl., 184:3 (1994), 453–463  crossref  mathscinet  zmath
22. H. Bavinck and R. Koekoek, “Difference operators with Sobolev type Meixner polynomials as eigenfunctions”, Comput. Math. Appl., 36:10–12 (1998), 163–177  crossref  mathscinet  zmath
23. I. Area, E. Godoy and F. Marcellán, “Inner products involving differences: the Meixner–Sobolev polynomials”, J. Differ. Equations Appl., 6:1 (2000), 1–31  crossref  mathscinet  zmath
24. S. F. Khwaja and A. B. Olde-Daalhuis, “Uniform asymptotic approximations for the Meixner–Sobolev polynomials”, Anal. Appl. (Singap.), 10:3 (2012), 345–361  crossref  mathscinet  zmath
25. J. J. Moreno-Balcázar, “$\Delta$-Meixner–Sobolev orthogonal polynomials: Mehler–Heine type formula and zeros”, J. Comput. Appl. Math., 284 (2015), 228–234  crossref  mathscinet  zmath
26. R. S. Costas-Santos, A. Soria-Lorente and J.-M. Vilaire, “On polynomials orthogonal with respect to an inner product involving higher-order differences: the Meixner case”, Mathematics, 10:11 (2022), 1952, 16 pp.  crossref
27. I. I. Sharapudinov and Z. D. Gadzhieva, “Sobolev orthogonal polynomials generated by Meixner polynomials”, Izv. Saratov Univ. Nov. Ser. Mat. Mekh. Informat., 16:3 (2016), 310–321 (Russian)  mathnet  crossref  mathscinet  zmath
28. I. I. Sharapudinov, Z. D. Gadzhieva and P. M. Gadzhimirzaev, “Difference equations and Sobolev orthogonal polynomials generated by Meixner polynomials”, Vladikavkaz Mat. Zh., 19:2 (2017), 58–72 (Russian)  mathnet  mathscinet  zmath
29. I. I. Sharapudinov and T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh”, Russian Math. (Izv. VUZ), 61:8 (2017), 59–70  mathnet  crossref  mathscinet  zmath
30. R. M. Gadzhimirzaev, “Convergence of the Fourier series in Meixner–Sobolev polynomials and approximation properties of its partial sums”, Math. Notes, 115:3 (2024), 301–316  mathnet  crossref  mathscinet  zmath
31. E. L. Poiani, “Mean Cesàro summability of Laguerre and Hermite series”, Trans. Amer. Math. Soc., 173 (1972), 1–31  crossref  mathscinet  zmath
32. R. M. Gadzhimirzaev, “Estimate of the Lebesgue function of Fourier sums in terms of modified Meixner polynomials”, Math. Notes, 106:4 (2019), 526–536  mathnet  crossref  mathscinet  zmath

Citation: R. M. Gadzhimirzaev, “Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials”, Sb. Math., 215:9 (2024), 1202–1223
Citation in format AMSBIB
\Bibitem{Gad24}
\by R.~M.~Gadzhimirzaev
\paper Approximation properties of de~la~Vall\'ee Poussin means of~partial Fourier series in Meixner--Sobolev polynomials
\jour Sb. Math.
\yr 2024
\vol 215
\issue 9
\pages 1202--1223
\mathnet{http://mi.mathnet.ru/eng/sm10013}
\crossref{https://doi.org/10.4213/sm10013e}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4837040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024SbMat.215.1202G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001375658800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85212474185}
Linking options:
  • https://www.mathnet.ru/eng/sm10013
  • https://doi.org/10.4213/sm10013e
  • https://www.mathnet.ru/eng/sm/v215/i9/p77
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025