Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 209, Number 2, Pages 205–223
DOI: https://doi.org/10.4213/tmf10104
(Mi tmf10104)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mirror map for Fermat polynomials with a nonabelian group of symmetries

A. A. Basalaevab, A. A. Ionovca

a Department of Mathematics, National Research University "Higher School of Economics", Moscow. Russia
b Skolkovo Institute of Science and Technology, Moscow, Russia
c Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
Full-text PDF (549 kB) Citations (5)
References:
Abstract: We study Landau–Ginzburg orbifolds $(f,G)$ with $f=x_1^n+\cdots+x_N^n$ and $G=S\ltimes G^d$, where $S\subseteq S_N$ and $G^d$ is either the maximal group of scalar symmetries of $f$ or the intersection of the maximal diagonal symmetries of $f$ with $SL_N(\mathbb{C})$. We construct a mirror map between the corresponding phase spaces and prove that it is an isomorphism restricted to a certain subspace of the phase space when $n=N$ is a prime number. When $S$ satisfies the parity condition of Ebeling–Gusein-Zade, this subspace coincides with the full space. We also show that two phase spaces are isomorphic for $n=N=5$.
Keywords: mirror symmetry, nonabelian symmetry group, singularity theory.
Funding agency Grant number
Russian Science Foundation 19-71-00086
Ministry of Science and Higher Education of the Russian Federation 075-15-2021-608
The authors acknowledge partial support by the RSF (grant no. 19-71-00086) and by the International Laboratory of Cluster Geometry, HSE University (RF Government grant, agreement no. 075-15-2021-608 from 08.06.2021). In particular, the proof of Theorem 1 was obtained under the support of the RSF (grant no. 19-71-00086) and the proof of Theorem 2 was obtained under the support of the International Laboratory of Cluster Geometry, HSE University (RF Government grant).
Received: 31.03.2021
Revised: 05.05.2021
English version:
Theoretical and Mathematical Physics, 2021, Volume 209, Issue 2, Pages 1491–1506
DOI: https://doi.org/10.1134/S0040577921110015
Bibliographic databases:
Document Type: Article
MSC: 14B05,14J33
Language: Russian
Citation: A. A. Basalaev, A. A. Ionov, “Mirror map for Fermat polynomials with a nonabelian group of symmetries”, TMF, 209:2 (2021), 205–223; Theoret. and Math. Phys., 209:2 (2021), 1491–1506
Citation in format AMSBIB
\Bibitem{BasIon21}
\by A.~A.~Basalaev, A.~A.~Ionov
\paper Mirror map for Fermat polynomials with a~nonabelian group of
symmetries
\jour TMF
\yr 2021
\vol 209
\issue 2
\pages 205--223
\mathnet{http://mi.mathnet.ru/tmf10104}
\crossref{https://doi.org/10.4213/tmf10104}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4337495}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...209.1491B}
\elib{https://elibrary.ru/item.asp?id=47534884}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 209
\issue 2
\pages 1491--1506
\crossref{https://doi.org/10.1134/S0040577921110015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000721607000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85119840726}
Linking options:
  • https://www.mathnet.ru/eng/tmf10104
  • https://doi.org/10.4213/tmf10104
  • https://www.mathnet.ru/eng/tmf/v209/i2/p205
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025