Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 210, Number 1, Pages 128–139
DOI: https://doi.org/10.4213/tmf10144
(Mi tmf10144)
 

This article is cited in 1 scientific paper (total in 1 paper)

Functional integrals and phase stability properties in the $O(N)$ vector field condensation model

Jun Yan

Department of Physics, Sichuan Normal University, Chengdu, China
Full-text PDF (395 kB) Citations (1)
References:
Abstract: Using condensation of auxiliary Bose fields and the functional integral method, we derive an effective action of the binary $O(N)$ vector field model on a sphere. We analyze two models with different forms of the coupling constants: the binary field model on $S^3$ and the two-component vector field model on $S^d$. In both models, we obtain the convergence conditions for the partition function from the traces of a free propagator. From analytic solutions of the saddle-point equations, we derive phase stability conditions, which imply that the system allows the formation of coexisting condensates when the condensate densities of the complex Bose fields and the unit vector field satisfy a certain constraint. In addition, within the $1/N$ expansion of the free energy on $S^d$, we also find that the absolute value of free energy decreases as the dimension $d$ increases.
Keywords: functional integral, convergence condition, phase stability condition, $O(N)$ condensation model.
Funding agency Grant number
Natural Science Foundation of Sichuan Education Committee 11ZA100
This work was supported by the Natural Science Foundation of Sichuan Education Committee (Grant No. 11ZA100).
Received: 22.06.2021
Revised: 24.08.2021
Published: 27.12.2021
English version:
Theoretical and Mathematical Physics, 2022, Volume 210, Issue 1, Pages 111–120
DOI: https://doi.org/10.1134/S0040577922010081
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Jun Yan, “Functional integrals and phase stability properties in the $O(N)$ vector field condensation model”, TMF, 210:1 (2022), 128–139; Theoret. and Math. Phys., 210:1 (2022), 111–120
Citation in format AMSBIB
\Bibitem{Yan22}
\by Jun~Yan
\paper Functional integrals and phase stability properties in the~$O(N)$ vector field condensation model
\jour TMF
\yr 2022
\vol 210
\issue 1
\pages 128--139
\mathnet{http://mi.mathnet.ru/tmf10144}
\crossref{https://doi.org/10.4213/tmf10144}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4360138}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...210..111Y}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 210
\issue 1
\pages 111--120
\crossref{https://doi.org/10.1134/S0040577922010081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000749189400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85124352758}
Linking options:
  • https://www.mathnet.ru/eng/tmf10144
  • https://doi.org/10.4213/tmf10144
  • https://www.mathnet.ru/eng/tmf/v210/i1/p128
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025