Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2022, Volume 210, Number 3, Pages 387–404
DOI: https://doi.org/10.4213/tmf10194
(Mi tmf10194)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the Riemann–Hilbert problem of the matrix Lakshmanan–Porsezian–Daniel system with a $4\times4$ AKNS-type matrix Lax pair

Beibei Huab, Xiaomei Yua, Ling Zhanga

a School of Mathematics and Finance, Chuzhou University, Chuzhou, Anhui, China
b Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang, China
References:
Abstract: The initial-boundary value problems for the matrix Lakshmanan–Porsezian–Daniel system are studied by utilizing the Fokas unified transform approach. First, the spectral analysis of the $4\times4$ Ablowitz–Kaup–Newell–Segur-type matrix Lax pair is performed. Second, solutions of the matrix Lakshmanan–Porsezian–Daniel system are reconstructed from a $4\times4$ matrix Riemann–Hilbert problem. It is proved in addition that the spectral functions are not independent but are related by the so-called global relation.
Keywords: Volterra integral equations, Riemann–Hilbert problem, matrix Lakshmanan–Porsezian–Daniel system, initial-boundary value problem, Fokas unified transform approach.
Funding agency Grant number
National Natural Science Foundation of China 12147115
11975145
Natural Science Foundation of Anhui Province 2108085QA09
Natural Science Research Project of Colleges and Universities in Anhui Province KJ2021A1094
KJ2021B03
This work was supported by the National Natural Science Foundation of China under the grants 12147115 and 11975145, the Natural Science Foundation of Anhui Province under the grant 2108085QA09, and the Natural Science Research Project of Colleges and Universities in Anhui Province under the grant KJ2021A1094 and KJ2021B03.
Received: 08.11.2021
Revised: 30.12.2021
Published: 27.02.2022
English version:
Theoretical and Mathematical Physics, 2022, Volume 210, Issue 3, Pages 337–352
DOI: https://doi.org/10.1134/S0040577922030047
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik, 02.20.Sv
Language: Russian
Citation: Beibei Hu, Xiaomei Yu, Ling Zhang, “On the Riemann–Hilbert problem of the matrix Lakshmanan–Porsezian–Daniel system with a $4\times4$ AKNS-type matrix Lax pair”, TMF, 210:3 (2022), 387–404; Theoret. and Math. Phys., 210:3 (2022), 337–352
Citation in format AMSBIB
\Bibitem{HuYuLin22}
\by Beibei~Hu, Xiaomei~Yu, Ling~Zhang
\paper On the~Riemann--Hilbert problem of the~matrix Lakshmanan--Porsezian--Daniel system with a~$4\times4$ AKNS-type matrix Lax pair
\jour TMF
\yr 2022
\vol 210
\issue 3
\pages 387--404
\mathnet{http://mi.mathnet.ru/tmf10194}
\crossref{https://doi.org/10.4213/tmf10194}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4461501}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022TMP...210..337H}
\transl
\jour Theoret. and Math. Phys.
\yr 2022
\vol 210
\issue 3
\pages 337--352
\crossref{https://doi.org/10.1134/S0040577922030047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000772448700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85127099801}
Linking options:
  • https://www.mathnet.ru/eng/tmf10194
  • https://doi.org/10.4213/tmf10194
  • https://www.mathnet.ru/eng/tmf/v210/i3/p387
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025