Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 222, Number 1, Pages 62–80
DOI: https://doi.org/10.4213/tmf10643
(Mi tmf10643)
 

This article is cited in 1 scientific paper (total in 1 paper)

Exact smooth and nonsmooth solutions for integro-partial differential equations by rapidly convergent approximation method

P. K. Das

Department of Mathematics, Triveni Devi Bhalotia College, Raniganj, West Bengal, India
References:
Abstract: We investigate a general class of second-order integro–ordinary-differential equations with arbitrary-power nonlinear terms, which can be used as a mathematical model for a variety of important physical areas in mathematics, mathematical physics, and applied sciences. The exact smooth and nonsmooth solutions of the aforementioned integro–differential equation in terms of the Gauss hypergeometric function are obtained here for the first time using the rapidly convergent approximation method. The prerequisites for the existence of such solutions are outlined in a theorem. Additionally, a few theorems are presented that contain the conditions under which our derived nonsmooth solution can be viewed as a weak solution. Using the aforementioned results, we obtain exact smooth and nonsmooth solutions of the following nonlinear integro-partial differential equations: the $(1+1)$-dimensional integro–differential Ito equation, the $(3+1)$-dimensional Yu–Toda–Sasa–Fukuyama equation, and the Calogero–Bogoyavlenskii–Schiff equation.
Keywords: exact smooth and nonsmooth solutions, Gauss hypergeometric function solution, weak solutions, integro–partial-differential equations, rapidly convergent approximation method.
Received: 14.11.2023
Revised: 14.11.2023
Published: 16.01.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 222, Issue 1, Pages 53–68
DOI: https://doi.org/10.1134/S0040577925010052
Bibliographic databases:
Document Type: Article
MSC: 35C05, 35D30
Language: Russian
Citation: P. K. Das, “Exact smooth and nonsmooth solutions for integro-partial differential equations by rapidly convergent approximation method”, TMF, 222:1 (2025), 62–80; Theoret. and Math. Phys., 222:1 (2025), 53–68
Citation in format AMSBIB
\Bibitem{Das25}
\by P.~K.~Das
\paper Exact smooth and nonsmooth solutions for integro-partial differential equations by rapidly convergent approximation method
\jour TMF
\yr 2025
\vol 222
\issue 1
\pages 62--80
\mathnet{http://mi.mathnet.ru/tmf10643}
\crossref{https://doi.org/10.4213/tmf10643}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4855372}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025TMP...222...53D}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 222
\issue 1
\pages 53--68
\crossref{https://doi.org/10.1134/S0040577925010052}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-86000220118}
Linking options:
  • https://www.mathnet.ru/eng/tmf10643
  • https://doi.org/10.4213/tmf10643
  • https://www.mathnet.ru/eng/tmf/v222/i1/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025