Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 220, Number 1, Pages 164–190
DOI: https://doi.org/10.4213/tmf10667
(Mi tmf10667)
 

This article is cited in 1 scientific paper (total in 1 paper)

Adiabatic perturbation theory for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions

V. M. Rothos

School of Mechanical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
Full-text PDF (552 kB) Citations (1)
References:
Abstract: We consider a defocusing Manakov system (vector nonlinear Schrödinger (NLS) system) with nonvanishing boundary conditions and use the inverse scattering transform formalism. Integrable models provide a very useful proving ground for testing new analytic and numerical approaches to studying the vector NLS system. We develop a perturbation theory for the integrable vector NLS model. Evidently, small disturbance of the integrability condition can be considered a perturbation of the integrable model. Our formalism is based on the Riemann–Hilbert problem associated with the vector NLS model with nonvanishing boundary conditions. We use the RH and adiabatic perturbation theory to analyze the dynamics of dark–dark and dark–bright solitons in the presence of a perturbation with nonvanishing boundary conditions.
Keywords: inverse scattering transform, nonlinear waves, solitons, nonlinear Schrödinger systems.
Funding agency Grant number
ESF - European Social Fund
National Strategic Reference Framework D.534 MIS: 379337: THALES
International Research Staff Exchange Scheme
The work has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) Research Funding Program D.534 MIS: 379337: THALES and Marie Curie Actions, People, IRSES.
Received: 30.12.2023
Revised: 30.12.2023
Published: 30.06.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 220, Issue 1, Pages 1201–1223
DOI: https://doi.org/10.1134/S0040577924070110
Bibliographic databases:
Document Type: Article
PACS: 22E46, 53C35, 57S20
Language: Russian
Citation: V. M. Rothos, “Adiabatic perturbation theory for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, TMF, 220:1 (2024), 164–190; Theoret. and Math. Phys., 220:1 (2024), 1201–1223
Citation in format AMSBIB
\Bibitem{Rot24}
\by V.~M.~Rothos
\paper Adiabatic perturbation theory for the~vector nonlinear Schr\"odinger equation with nonvanishing boundary conditions
\jour TMF
\yr 2024
\vol 220
\issue 1
\pages 164--190
\mathnet{http://mi.mathnet.ru/tmf10667}
\crossref{https://doi.org/10.4213/tmf10667}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4778545}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...220.1201R}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 220
\issue 1
\pages 1201--1223
\crossref{https://doi.org/10.1134/S0040577924070110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85199897029}
Linking options:
  • https://www.mathnet.ru/eng/tmf10667
  • https://doi.org/10.4213/tmf10667
  • https://www.mathnet.ru/eng/tmf/v220/i1/p164
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025