Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 113, Number 1, Pages 85–99
DOI: https://doi.org/10.4213/tmf1067
(Mi tmf1067)
 

This article is cited in 19 scientific papers (total in 19 papers)

Proof of the absence of multiplicative renormalizability of the Gross–Neveu model in dimensional regularization $d=2+2\varepsilon$

A. N. Vasil'ev, M. I. Vyazovskii

Saint-Petersburg State University
References:
Abstract: We prove that the simplest four-fermion Gross–Neveu model with dimensional regularization $d=2+2\varepsilon$ is not multiplicatively renormalizable due to the counterterm generated by the three-loop vertex diagrams that is proportional to the evanescent operator [1] $V_3=(\bar\psi\gamma_{ikl}^{(3)}\psi )^2/2$, where $\gamma_{i_1\dots i_n}^{(n)}$ is the fully antisymmetric product of $n$ $\gamma$-matrices and is not zero in arbitrary dimensions. Therefore, calculations of the $(2+\varepsilon)$-expansion of the critical indices $\eta$ and $\nu$ in the framework of the simple Gross–Neveu model are correct only to $\varepsilon^4$ for $\eta$ and to $\varepsilon^3$ for $\nu$. In higher orders, one must take into consideration the generation of other (not only $V_3$) evanescent operators.
Received: 15.05.1997
English version:
Theoretical and Mathematical Physics, 1997, Volume 113, Issue 1, Pages 1277–1288
DOI: https://doi.org/10.1007/BF02634015
Bibliographic databases:
Language: Russian
Citation: A. N. Vasil'ev, M. I. Vyazovskii, “Proof of the absence of multiplicative renormalizability of the Gross–Neveu model in dimensional regularization $d=2+2\varepsilon$”, TMF, 113:1 (1997), 85–99; Theoret. and Math. Phys., 113:1 (1997), 1277–1288
Citation in format AMSBIB
\Bibitem{VasVya97}
\by A.~N.~Vasil'ev, M.~I.~Vyazovskii
\paper Proof of the absence of multiplicative renormalizability of the Gross--Neveu model in dimensional regularization $d=2+2\varepsilon$
\jour TMF
\yr 1997
\vol 113
\issue 1
\pages 85--99
\mathnet{http://mi.mathnet.ru/tmf1067}
\crossref{https://doi.org/10.4213/tmf1067}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1489730}
\zmath{https://zbmath.org/?q=an:0963.81503}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 113
\issue 1
\pages 1277--1288
\crossref{https://doi.org/10.1007/BF02634015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000071746100008}
Linking options:
  • https://www.mathnet.ru/eng/tmf1067
  • https://doi.org/10.4213/tmf1067
  • https://www.mathnet.ru/eng/tmf/v113/i1/p85
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025