Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2024, Volume 220, Number 1, Pages 74–92
DOI: https://doi.org/10.4213/tmf10680
(Mi tmf10680)
 

Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation

D. A. Kulikov

Demidov Yaroslavl State University, Yaroslavl, Russia
References:
Abstract: We continue studies of the nonlocal erosion equation that is used as a mathematical model of the formation of a spatially inhomogeneous relief on semiconductor surfaces. We show that such a relief can form as a result of local bifurcations in the case where the stability of the spatially homogeneous equilibrium state changes. We consider a periodic boundary-value problem and study its codimension-$2$ bifurcations. For solutions describing an inhomogeneous relief, we obtain asymptotic formulas and study their stability. The analysis of the mathematical problem is based on modern methods of the theory of dynamical systems with an infinite-dimensional phase space, in particular, on the method of integral manifolds and on the theory of normal forms.
Keywords: nanorelief formation, nonlocal erosion equation, stability, bifurcation, integral manifold, normal form.
Received: 22.01.2024
Revised: 18.03.2024
Published: 30.06.2024
English version:
Theoretical and Mathematical Physics, 2024, Volume 220, Issue 1, Pages 1122–1138
DOI: https://doi.org/10.1134/S0040577924070067
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. A. Kulikov, “Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation”, TMF, 220:1 (2024), 74–92; Theoret. and Math. Phys., 220:1 (2024), 1122–1138
Citation in format AMSBIB
\Bibitem{Kul24}
\by D.~A.~Kulikov
\paper Mechanism for the~formation of an~inhomogeneous nanorelief and bifurcations in a~nonlocal erosion equation
\jour TMF
\yr 2024
\vol 220
\issue 1
\pages 74--92
\mathnet{http://mi.mathnet.ru/tmf10680}
\crossref{https://doi.org/10.4213/tmf10680}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4778540}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024TMP...220.1122K}
\transl
\jour Theoret. and Math. Phys.
\yr 2024
\vol 220
\issue 1
\pages 1122--1138
\crossref{https://doi.org/10.1134/S0040577924070067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85199898464}
Linking options:
  • https://www.mathnet.ru/eng/tmf10680
  • https://doi.org/10.4213/tmf10680
  • https://www.mathnet.ru/eng/tmf/v220/i1/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025