Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 222, Number 2, Pages 249–268
DOI: https://doi.org/10.4213/tmf10810
(Mi tmf10810)
 

$\bar{\partial}$-method for the $(2+1)$-dimensional coupled Boussinesq equation and its integrable extension

Huanhuan Lu, Xinan Ren

School of Mathematics, China University of Mining and Technology, Xuzhou, China
References:
Abstract: The content of this paper is divided into two parts. Starting from the Lax pair with a spectral function $\psi(x,y,t,k)$, the $\bar{\partial}$-dressing method is used to investigate the $(2+1)$-dimensional coupled Boussinesq equation, thereby constructing the scattering equation in the form of a linear $\bar{\partial}$ problem, and ultimately deriving the reconstruction formula for the solutions. By complexifying each independent variable of the $(2+1)$-dimensional coupled Boussinesq equation, we construct its generalizations to $(4+2)$ dimensions. The spectral analysis of the $t$-independent part of the Lax pair with a spectral function $\chi(x,y,t,k)$ together with the nonlocal $\bar{\partial}$ formalism yield the representation for the solution of the $\bar{\partial}$ problem. Additionally, the nonlinear Fourier transform pair comprising both direct and inverse transforms is successfully worked out.
Keywords: $\bar{\partial}$-dressing method, nonlocal $\bar{\partial}$ formalism, Green's function, Boussinesq equation.
Funding agency Grant number
National Natural Science Foundation of China 12371256
Sci&Tech Program K202317
This work was supported by the National Natural Science Foundation of China (grant No. 12371256) and the SuQian Sci&Tech Program (grant No. K202317).
Received: 13.08.2024
Revised: 07.10.2024
Published: 01.02.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 222, Issue 2, Pages 211–227
DOI: https://doi.org/10.1134/S0040577925020035
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik
Language: Russian
Citation: Huanhuan Lu, Xinan Ren, “A $\bar{\partial}$-method for the $(2+1)$-dimensional coupled Boussinesq equation and its integrable extension”, TMF, 222:2 (2025), 249–268; Theoret. and Math. Phys., 222:2 (2025), 211–227
Citation in format AMSBIB
\Bibitem{LuRen25}
\by Huanhuan~Lu, Xinan~Ren
\paper A~$\bar{\partial}$-method for the~$(2+1)$-dimensional coupled Boussinesq equation and its integrable extension
\jour TMF
\yr 2025
\vol 222
\issue 2
\pages 249--268
\mathnet{http://mi.mathnet.ru/tmf10810}
\crossref{https://doi.org/10.4213/tmf10810}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4868929}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025TMP...222..211L}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 222
\issue 2
\pages 211--227
\crossref{https://doi.org/10.1134/S0040577925020035}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85219001962}
Linking options:
  • https://www.mathnet.ru/eng/tmf10810
  • https://doi.org/10.4213/tmf10810
  • https://www.mathnet.ru/eng/tmf/v222/i2/p249
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025