Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 225, Number 1, Pages 95–114
DOI: https://doi.org/10.4213/tmf10950
(Mi tmf10950)
 

Simple equations method: Methodology, inspiration by the research of Kudryashov, and several remarks on the application of balance equations

N. K. Vitanov, K. N. Vitanov

Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
References:
Abstract: We discuss an aspect of the application of the Simple Equations Method (SEsM) for obtaining exact solutions of nonlinear differential equations. The aspect is related to the number of balance equations needed to obtain an exact solution of nonlinear differential equations solved. The work and results of Professor Kudryashov stimulated our research on SEsM at an important period in the development of this methodology. Because of this, we start with a short description of SEsM and then briefly review our research on the exact solution of nonlinear differential equations, as well as some of the results of Prof. Kudryashov in this area in the last 30 years. We apply the specific case $\mathrm{SEsM}(1,1)$ of the SEsM to the following class of nonlinear differential equations:
\begin{equation*} \sum_{f=0}^{f_{\max}}\sum_{\omega=1}^{n}\sum_{\omega_1=0}^\omega A_{f,\omega,\omega_1} \biggl(F,\biggl\{\frac{\partial^{\zeta}F}{\partial x^{\zeta_1}\,\partial t^{\zeta-\zeta_1}}\biggr\}\biggr) \biggl[\frac{\partial^\omega F}{\partial x^{\omega_1}\,\partial t^{\omega-\omega_1}}\biggr]^f=B(F), \end{equation*}
where $A_{f,\omega,\omega_1}\bigl(F,\bigl\{\frac{\partial^{\zeta}F}{\partial x^{\zeta_1}\partial t^{\zeta-\zeta_1}}\bigr\}\bigr)$ and $B(F)$ are polynomials in the unknown function $F$ and its derivatives. As a simple equation, we use an ordinary differential equation $\bigl(\frac{d\Phi}{d\xi}\bigr)^\epsilon=\sum_{\pi=0}^{\sigma}\gamma_{\pi}[\Phi (\xi)]^\pi$, which contains as a specific case, the elliptic equation $\bigl(\frac{d\Phi}{d\xi}\bigr)^2=a\Phi^4+b\Phi^2+c$. We show that this can lead to the necessity of using more than one balance equation. The methodological results are illustrated by selected simple examples.
Keywords: nonlinear partial differential equations, Simple Equations Method (SEsM) , exact traveling-wave solutions, elliptic equation, balance equation.
Received: 24.02.2025
Revised: 06.03.2025
Published: 30.09.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 225, Issue 1, Pages 1773–1790
DOI: https://doi.org/10.1134/S004057792510006X
Document Type: Article
PACS: 02.30.Jr ; 02.30.Hq
Language: Russian
Citation: N. K. Vitanov, K. N. Vitanov, “Simple equations method: Methodology, inspiration by the research of Kudryashov, and several remarks on the application of balance equations”, TMF, 225:1 (2025), 95–114; Theoret. and Math. Phys., 225:1 (2025), 1773–1790
Citation in format AMSBIB
\Bibitem{VitVit25}
\by N.~K.~Vitanov, K.~N.~Vitanov
\paper Simple equations method: Methodology, inspiration by the~research of Kudryashov, and several remarks on the~application of balance equations
\jour TMF
\yr 2025
\vol 225
\issue 1
\pages 95--114
\mathnet{http://mi.mathnet.ru/tmf10950}
\crossref{https://doi.org/10.4213/tmf10950}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 225
\issue 1
\pages 1773--1790
\crossref{https://doi.org/10.1134/S004057792510006X}
Linking options:
  • https://www.mathnet.ru/eng/tmf10950
  • https://doi.org/10.4213/tmf10950
  • https://www.mathnet.ru/eng/tmf/v225/i1/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025