Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2025, Volume 223, Number 3, Pages 632–651
DOI: https://doi.org/10.4213/tmf10954
(Mi tmf10954)
 

This article is cited in 4 scientific papers (total in 4 papers)

Three-dimensional MHD flow of a radiative Eyring–Powell nanofluid: Exploring Hall effects and heat transfer

G. Muralia, P. Lakshmib, M. Amarnathc, J. Venkata Madhud, A.P. Lingaswamye

a Department of Mathematics, Geethanjali College of Engineering and Technology, Cheeryal-Telangana, India
b Department of Mathematics, B V Raju Institute of Technology, Narsapur, India
c Department of Mathematics, Chaitanya Bharathi Institute of Technology, Gandipet, India
d Department of Mathematics, Sreenidhi Institute of Science and Technology, India
e Department of Physics, G. Pulla Reddy Engineering College, Kurnool, Andra Pradesh, India
References:
Abstract: In the framework of magnetic fields, thermophoresis, porous media, and Brownian motion, this study examines the rotation and Hall current effects on an electrically conductive, viscous, incompressible, non-Newtonian Eyring–Powell fluid, including nanofluid particles, across a stretched sheet. The governing nonlinear partial differential equations (PDEs) in this work are converted into ordinary differential equations (ODEs) using appropriate similarity transformations. This system of ODEs is then numerically solved using the MATLAB bvp4c solver. Effects of numerous crucial factors on the velocity, temperature, and concentration profiles are shown in graphs. Furthermore, the stretched sheet mass transfer rate, heat transfer rate, and skin-friction coefficient are calculated and shown in tables. The published results and the present findings are compared in a tabular analysis.
Keywords: Hall current, three dimensional flow, nanofluid, Eyring–Powell fluid, magnetic field, porous medium, stretching sheet, rotation.
Received: 25.02.2025
Revised: 25.02.2025
Published: 11.08.2025
English version:
Theoretical and Mathematical Physics, 2025, Volume 223, Issue 3, Pages 1070–1086
DOI: https://doi.org/10.1134/S0040577925060170
Bibliographic databases:
Document Type: Article
MSC: 76,35,65
Language: Russian
Citation: G. Murali, P. Lakshmi, M. Amarnath, J. Venkata Madhu, A.P. Lingaswamy, “Three-dimensional MHD flow of a radiative Eyring–Powell nanofluid: Exploring Hall effects and heat transfer”, TMF, 223:3 (2025), 632–651; Theoret. and Math. Phys., 223:3 (2025), 1070–1086
Citation in format AMSBIB
\Bibitem{MurLakAma25}
\by G.~Murali, P.~Lakshmi, M.~Amarnath, J.~Venkata Madhu, A.P.~Lingaswamy
\paper Three-dimensional MHD flow of a~radiative Eyring--Powell nanofluid: Exploring Hall effects and~heat transfer
\jour TMF
\yr 2025
\vol 223
\issue 3
\pages 632--651
\mathnet{http://mi.mathnet.ru/tmf10954}
\crossref{https://doi.org/10.4213/tmf10954}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2025TMP...223.1070M}
\transl
\jour Theoret. and Math. Phys.
\yr 2025
\vol 223
\issue 3
\pages 1070--1086
\crossref{https://doi.org/10.1134/S0040577925060170}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105009329456}
Linking options:
  • https://www.mathnet.ru/eng/tmf10954
  • https://doi.org/10.4213/tmf10954
  • https://www.mathnet.ru/eng/tmf/v223/i3/p632
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025