Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1999, Volume 119, Number 1, Pages 34–46
DOI: https://doi.org/10.4213/tmf725
(Mi tmf725)
 

This article is cited in 3 scientific papers (total in 3 papers)

Equations of motion and conserved quantities in non-Abelian discrete integrable models

V. A. Verbusa, A. P. Protogenovb

a Institute for Physics of Microstructures, Russian Academy of Sciences
b Institute of Applied Physics, Russian Academy of Sciences
Full-text PDF (224 kB) Citations (3)
References:
Abstract: Conserved quantities for the Hirota bilinear difference equation, which is satisfied by eigenvalues of the transfer matrix, are studied. The transfer-matrix eigenvalue combinations that are integrals of motion for discrete integrable models, which correspond to $A_{k-1}$ algebras and satisfy zero or quasi-periodic boundary conditions, are found. Discrete equations of motion for a non-Abelian generalization of the Liouville model and the discrete analogue of the Tsitseiko equation are obtained.
Received: 25.06.1998
Revised: 28.08.1998
English version:
Theoretical and Mathematical Physics, 1999, Volume 119, Issue 1, Pages 420–430
DOI: https://doi.org/10.1007/BF02557340
Bibliographic databases:
Language: Russian
Citation: V. A. Verbus, A. P. Protogenov, “Equations of motion and conserved quantities in non-Abelian discrete integrable models”, TMF, 119:1 (1999), 34–46; Theoret. and Math. Phys., 119:1 (1999), 420–430
Citation in format AMSBIB
\Bibitem{VerPro99}
\by V.~A.~Verbus, A.~P.~Protogenov
\paper Equations of motion and conserved quantities in non-Abelian discrete integrable models
\jour TMF
\yr 1999
\vol 119
\issue 1
\pages 34--46
\mathnet{http://mi.mathnet.ru/tmf725}
\crossref{https://doi.org/10.4213/tmf725}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1702812}
\zmath{https://zbmath.org/?q=an:0991.81038}
\transl
\jour Theoret. and Math. Phys.
\yr 1999
\vol 119
\issue 1
\pages 420--430
\crossref{https://doi.org/10.1007/BF02557340}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000081250900003}
Linking options:
  • https://www.mathnet.ru/eng/tmf725
  • https://doi.org/10.4213/tmf725
  • https://www.mathnet.ru/eng/tmf/v119/i1/p34
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025