Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2013, Volume 176, Number 3, Pages 417–428
DOI: https://doi.org/10.4213/tmf8498
(Mi tmf8498)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator

J. I. Abdullaeva, B. U. Mamirov

a Samarkand State University, Samarkand, Uzbekistan
Full-text PDF (430 kB) Citations (1)
References:
Abstract: We consider two-particle Schrödinger operator $H(k)$ on a three-dimensional lattice $\mathbb Z^3$ (here $k$ is the total quasimomentum of a two-particle system, $k\in\mathbb{T}^3:=(-\pi,\pi]^3$). We show that for any $k\in S=\mathbb{T}^3\setminus(-\pi,\pi)^3$, there is a potential $\hat v$ such that the two-particle operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ accumulating near the left boundary $m(k)$ of the continuous spectrum. We describe classes of potentials $W(j)$ and $W(ij)$ and manifolds $S(j)\subset S$, $i,j\in\{1,2,3\}$, such that if $k\in S(3)$, $(k_2,k_3)\in(-\pi,\pi)^2$, and $\hat v\in W(3)$, then the operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ with an asymptotic exponential form as $n\to\infty$ and if $k\in S(i)\cap S(j)$ and $\hat v\in W(ij)$, then the eigenvalues $z_{nm}(k)$ of $H(k)$ can be calculated exactly. In both cases, we present the explicit form of the eigenfunctions.
Keywords: Hamiltonian, total quasimomentum, Schrödinger operator, asymptotic behavior, eigenvalue, eigenfunction.
Received: 11.01.2013
Revised: 14.02.2013
English version:
Theoretical and Mathematical Physics, 2013, Volume 176, Issue 3, Pages 1184–1193
DOI: https://doi.org/10.1007/s11232-013-0099-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. I. Abdullaev, B. U. Mamirov, “Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator”, TMF, 176:3 (2013), 417–428; Theoret. and Math. Phys., 176:3 (2013), 1184–1193
Citation in format AMSBIB
\Bibitem{AbdMam13}
\by J.~I.~Abdullaev, B.~U.~Mamirov
\paper Asymptotic behavior of eigenvalues of the~two-particle discrete Schr\"odinger operator
\jour TMF
\yr 2013
\vol 176
\issue 3
\pages 417--428
\mathnet{http://mi.mathnet.ru/tmf8498}
\crossref{https://doi.org/10.4213/tmf8498}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3230742}
\zmath{https://zbmath.org/?q=an:1286.81076}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013TMP...176.1184A}
\elib{https://elibrary.ru/item.asp?id=20732659}
\transl
\jour Theoret. and Math. Phys.
\yr 2013
\vol 176
\issue 3
\pages 1184--1193
\crossref{https://doi.org/10.1007/s11232-013-0099-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325707900007}
\elib{https://elibrary.ru/item.asp?id=22140956}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885668333}
Linking options:
  • https://www.mathnet.ru/eng/tmf8498
  • https://doi.org/10.4213/tmf8498
  • https://www.mathnet.ru/eng/tmf/v176/i3/p417
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025