|
This article is cited in 1 scientific paper (total in 1 paper)
Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator
J. I. Abdullaeva, B. U. Mamirov a Samarkand State University, Samarkand, Uzbekistan
Abstract:
We consider two-particle Schrödinger operator $H(k)$ on a three-dimensional lattice $\mathbb Z^3$ (here $k$ is the total quasimomentum of a two-particle system, $k\in\mathbb{T}^3:=(-\pi,\pi]^3$). We show that for any $k\in S=\mathbb{T}^3\setminus(-\pi,\pi)^3$, there is a potential $\hat v$ such that the two-particle operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ accumulating near the left boundary $m(k)$ of the continuous spectrum. We describe classes of potentials $W(j)$ and $W(ij)$ and manifolds $S(j)\subset S$, $i,j\in\{1,2,3\}$, such that if $k\in S(3)$, $(k_2,k_3)\in(-\pi,\pi)^2$, and $\hat v\in W(3)$, then the operator $H(k)$ has infinitely many eigenvalues $z_n(k)$ with an asymptotic exponential form as $n\to\infty$ and if $k\in S(i)\cap S(j)$ and $\hat v\in W(ij)$, then the eigenvalues $z_{nm}(k)$ of $H(k)$ can be calculated exactly. In both cases, we present the explicit form of the eigenfunctions.
Keywords:
Hamiltonian, total quasimomentum, Schrödinger operator, asymptotic behavior, eigenvalue, eigenfunction.
Received: 11.01.2013 Revised: 14.02.2013
Citation:
J. I. Abdullaev, B. U. Mamirov, “Asymptotic behavior of eigenvalues of the two-particle discrete Schrödinger operator”, TMF, 176:3 (2013), 417–428; Theoret. and Math. Phys., 176:3 (2013), 1184–1193
Linking options:
https://www.mathnet.ru/eng/tmf8498https://doi.org/10.4213/tmf8498 https://www.mathnet.ru/eng/tmf/v176/i3/p417
|
|