Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 186, Number 2, Pages 272–292
DOI: https://doi.org/10.4213/tmf8878
(Mi tmf8878)
 

This article is cited in 7 scientific papers (total in 7 papers)

Bound states of a two-boson system on a two-dimensional lattice

Zh. I. Abdullaev, K. D. Kuliev

Faculty of Mechanics and Mathematics, Alisher Navoi Samarkand State University, Samarkand, Uzbekistan
Full-text PDF (549 kB) Citations (7)
References:
Abstract: We consider a Hamiltonian of a two-boson system on a two-dimensional lattice $\mathbb Z^2$. The Schrödinger operator $H(k_1,k_2)$ of the system for $k_1=k_2= \pi$, where $\mathbf k=(k_1,k_2)$ is the total quasimomentum, has an infinite number of eigenvalues. In the case of a special potential, one eigenvalue is simple, another one is double, and the other eigenvalues have multiplicity three. We prove that the double eigenvalue of $H(\pi,\pi)$ splits into two nondegenerate eigenvalues of $H(\pi,\pi-2\beta)$ for small $\beta>0$ and the eigenvalues of multiplicity three similarly split into three different nondegenerate eigenvalues. We obtain asymptotic formulas with the accuracy of $\beta^2$ and also an explicit form of the eigenfunctions of $H(\pi,\pi-2\beta)$ for these eigenvalues.
Keywords: Hamiltonian, bound state, Schrödinger operator, total quasimomentum, eigenvalue, perturbation theory, Birman–Schwinger principle.
Received: 25.02.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 186, Issue 2, Pages 231–250
DOI: https://doi.org/10.1134/S0040577916020082
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Zh. I. Abdullaev, K. D. Kuliev, “Bound states of a two-boson system on a two-dimensional lattice”, TMF, 186:2 (2016), 272–292; Theoret. and Math. Phys., 186:2 (2016), 231–250
Citation in format AMSBIB
\Bibitem{AbdKul16}
\by Zh.~I.~Abdullaev, K.~D.~Kuliev
\paper Bound states of a~two-boson system on a~two-dimensional lattice
\jour TMF
\yr 2016
\vol 186
\issue 2
\pages 272--292
\mathnet{http://mi.mathnet.ru/tmf8878}
\crossref{https://doi.org/10.4213/tmf8878}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3462754}
\elib{https://elibrary.ru/item.asp?id=25707855}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 2
\pages 231--250
\crossref{https://doi.org/10.1134/S0040577916020082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373359400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962359451}
Linking options:
  • https://www.mathnet.ru/eng/tmf8878
  • https://doi.org/10.4213/tmf8878
  • https://www.mathnet.ru/eng/tmf/v186/i2/p272
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025