Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 186, Number 1, Pages 87–100
DOI: https://doi.org/10.4213/tmf8979
(Mi tmf8979)
 

This article is cited in 8 scientific papers (total in 8 papers)

Superalgebraic representation of Dirac matrices

V. V. Monakhov

Saint Petersburg State University, Saint Petersburg, Russia
Full-text PDF (350 kB) Citations (8)
References:
Abstract: We consider a Clifford extension of the Grassmann algebra in which operators are constructed from products of Grassmann variables and derivatives with respect to them. We show that this algebra contains a subalgebra isomorphic to a matrix algebra and that it additionally contains operators of a generalized matrix algebra that mix states with different numbers of Grassmann variables. We show that these operators are extensions of spin-tensors to the case of superspace. We construct a representation of Dirac matrices in the form of operators of a generalized matrix algebra.
Keywords: Grassmann algebra, Clifford algebra, quantum field theory, generalized matrix algebra, Dirac matrix, spinor, superspace, supersymmetry.
English version:
Theoretical and Mathematical Physics, 2016, Volume 186, Issue 1, Pages 70–82
DOI: https://doi.org/10.1134/S0040577916010062
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Monakhov, “Superalgebraic representation of Dirac matrices”, TMF, 186:1 (2016), 87–100; Theoret. and Math. Phys., 186:1 (2016), 70–82
Citation in format AMSBIB
\Bibitem{Mon16}
\by V.~V.~Monakhov
\paper Superalgebraic representation of Dirac matrices
\jour TMF
\yr 2016
\vol 186
\issue 1
\pages 87--100
\mathnet{http://mi.mathnet.ru/tmf8979}
\crossref{https://doi.org/10.4213/tmf8979}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3462741}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...186...70M}
\elib{https://elibrary.ru/item.asp?id=25707839}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 1
\pages 70--82
\crossref{https://doi.org/10.1134/S0040577916010062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369418700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957552568}
Linking options:
  • https://www.mathnet.ru/eng/tmf8979
  • https://doi.org/10.4213/tmf8979
  • https://www.mathnet.ru/eng/tmf/v186/i1/p87
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025