Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 186, Number 1, Pages 101–112
DOI: https://doi.org/10.4213/tmf8993
(Mi tmf8993)
 

This article is cited in 1 scientific paper (total in 1 paper)

Alternative proof of the a priori $\tan\Theta$ theorem

A. K. Motovilov

Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
Full-text PDF (516 kB) Citations (1)
References:
Abstract: Let $A$ be a self-adjoint operator in a separable Hilbert space. We assume that the spectrum of $A$ consists of two isolated components $\sigma_0$ and $\sigma_1$ and the set $\sigma_0$ is in a finite gap of the set $\sigma_1$. It is known that if $V$ is a bounded additive self-adjoint perturbation of $A$ that is off-diagonal with respect to the partition $\operatorname{spec}(A)=\sigma_0\cup\sigma_1$, then for $\|V\|<\sqrt{2}d$, where $d= \operatorname{dist}(\sigma_0,\sigma_1)$, the spectrum of the perturbed operator $L=A+V$ consists of two isolated parts $\omega_0$ and $\omega_1$, which appear as perturbations of the respective spectral sets $\sigma_0$ and $\sigma_1$. Furthermore, we have the sharp upper bound $\|\mathsf{E}_A(\sigma_0)- \mathsf{E}_L(\omega_0)\|\le\sin\bigl(\arctan(\|V\|/d)\bigr)$ on the difference of the spectral projections $\mathsf{E}_A(\sigma_0)$ and $\mathsf{E}_L(\omega_0)$ corresponding to the spectral sets $\sigma_0$ and $\omega_0$ of the operators $A$ and $L$. We give a new proof of this bound in the case where $\|V\|<d$.
Keywords: perturbation of spectral subspace, operator Riccati equation, $\tan\Theta$ theorem.
English version:
Theoretical and Mathematical Physics, 2016, Volume 186, Issue 1, Pages 83–92
DOI: https://doi.org/10.1134/S0040577916010074
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. K. Motovilov, “Alternative proof of the a priori $\tan\Theta$ theorem”, TMF, 186:1 (2016), 101–112; Theoret. and Math. Phys., 186:1 (2016), 83–92
Citation in format AMSBIB
\Bibitem{Mot16}
\by A.~K.~Motovilov
\paper Alternative proof of the~a~priori $\tan\Theta$ theorem
\jour TMF
\yr 2016
\vol 186
\issue 1
\pages 101--112
\mathnet{http://mi.mathnet.ru/tmf8993}
\crossref{https://doi.org/10.4213/tmf8993}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3462742}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...186...83M}
\elib{https://elibrary.ru/item.asp?id=25707840}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 186
\issue 1
\pages 83--92
\crossref{https://doi.org/10.1134/S0040577916010074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369418700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957593666}
Linking options:
  • https://www.mathnet.ru/eng/tmf8993
  • https://doi.org/10.4213/tmf8993
  • https://www.mathnet.ru/eng/tmf/v186/i1/p101
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025