Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 195, Number 1, Pages 81–90
DOI: https://doi.org/10.4213/tmf9371
(Mi tmf9371)
 

This article is cited in 14 scientific papers (total in 14 papers)

Fractional Hamiltonian systems with locally defined potentials

A. B. Benhassine

Department of Mathematics, Higher Institute of Informatics and Mathematics, Monastir, Tunisia
References:
Abstract: We study solutions of the nonperiodic fractional Hamiltonian systems
$$ -{}_tD^{\alpha}_{\infty}({}_{-\infty} D_{t}^{\alpha}x(t))-L(t)x(t)+ \nabla W(t,x(t))=0,\quad x\in H^\alpha(\mathbb{R},\mathbb{R}^N), $$
where $\alpha\in(1/2,1]$, $t\in\mathbb R$, $L(t)\in C(\mathbb R,\mathbb R^{N^2})$, and ${}_{-\infty}D^{\alpha}_{t}$ and ${}_tD^{\alpha}_{\infty}$ are the respective left and right Liouville–Weyl fractional derivatives of order $\alpha$ on the whole axis $\mathbb R$. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix $L(t)$ is not necessarily coercive nor uniformly positive definite and $W(t,x)$ is defined only locally near the coordinate origin $x=0$. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples.
Keywords: fractional Hamiltonian system, critical point theory, symmetric mountain pass theorem.
Received: 22.03.2017
Revised: 25.08.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 195, Issue 1, Pages 563–571
DOI: https://doi.org/10.1134/S0040577918040086
Bibliographic databases:
Document Type: Article
MSC: 34C37, 35A15, 37J45
Language: Russian
Citation: A. B. Benhassine, “Fractional Hamiltonian systems with locally defined potentials”, TMF, 195:1 (2018), 81–90; Theoret. and Math. Phys., 195:1 (2018), 563–571
Citation in format AMSBIB
\Bibitem{Ben18}
\by A.~B.~Benhassine
\paper Fractional Hamiltonian systems with locally defined potentials
\jour TMF
\yr 2018
\vol 195
\issue 1
\pages 81--90
\mathnet{http://mi.mathnet.ru/tmf9371}
\crossref{https://doi.org/10.4213/tmf9371}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3780089}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..563B}
\elib{https://elibrary.ru/item.asp?id=32641437}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 1
\pages 563--571
\crossref{https://doi.org/10.1134/S0040577918040086}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431565600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046550659}
Linking options:
  • https://www.mathnet.ru/eng/tmf9371
  • https://doi.org/10.4213/tmf9371
  • https://www.mathnet.ru/eng/tmf/v195/i1/p81
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025