Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 458–473
DOI: https://doi.org/10.4213/tmf9812
(Mi tmf9812)
 

This article is cited in 9 scientific papers (total in 9 papers)

Semiclassical expansion of quantum gases into a vacuum

E. A. Kuznetsovabc, M. Yu. Kagande

a Lebedev Physical Institute, RAS, Moscow, Russia
b Institute for Theoretical Physics, RAS, Chernogolovka, Moscow Oblast, Russia
c Skolkovo Institute of Science and Technology, Skolkovo, Moscow Oblast, Russia
d Institute of Applied Physics, RAS, Nizhny Novgorod, Russia
e National Research University "Higher School of Economics", Moscow, Russia
References:
Abstract: In the framework of the Gross–Pitaevskii equation, we consider the problem of the expansion of quantum gases into a vacuum. For them, the chemical potential $\mu$ has a power-law dependence on the density $n$ with the exponent $\nu=2/D$, where $D$ is the space dimension. For gas condensates of Bose atoms as the temperature $T\to0$, $s$ scattering gives the main contribution to the interaction of atoms in the leading order in the gas parameter. Therefore, the exponent $\nu=1$ for an arbitrary $D$. In the three-dimensional case, $\nu=2/3$ is realized for condensates of Fermi atoms in the so-called unitary limit. For $\nu=2/D$, the Gross–Pitaevskii equation has an additional symmetry under Talanov transformations of the conformal type, which were first found for the stationary self-focusing of light. A consequence of this symmetry is the virial theorem relating the average size $R$ of an expanding gas cloud to its Hamiltonian. The quantity $R$ asymptotically increases linearly with time as $t\to\infty$. In the semiclassical limit, the equations of motion coincide with those of the hydrodynamics of an ideal gas with the adiabatic exponent $\gamma=1+2/D$. In this approximations, self-similar solutions describe angular deformations of the gas cloud against the background of the expanding gas in the framework of equations of the Ermakov–Ray–Reid type.
Keywords: Gross–Pitaevskii equation, Thomas–Fermi approximation, quantum gas.
Funding agency Grant number
Russian Science Foundation 19-72-30028
18-12-00002
The research of E. A. Kuznetsov was supported by a grant from the Russian Science Foundation (Project No. 19-72-30028).
The research of M. Yu. Kagan was supported by a grant from the Russian Science Foundation (Project No. 18-12-00002).
The two authors contributed equally to this work.
Received: 05.09.2019
Revised: 05.09.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 399–411
DOI: https://doi.org/10.1134/S0040577920030125
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. A. Kuznetsov, M. Yu. Kagan, “Semiclassical expansion of quantum gases into a vacuum”, TMF, 202:3 (2020), 458–473; Theoret. and Math. Phys., 202:3 (2020), 399–411
Citation in format AMSBIB
\Bibitem{KuzKag20}
\by E.~A.~Kuznetsov, M.~Yu.~Kagan
\paper Semiclassical expansion of quantum gases into a~vacuum
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 458--473
\mathnet{http://mi.mathnet.ru/tmf9812}
\crossref{https://doi.org/10.4213/tmf9812}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4070095}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..399K}
\elib{https://elibrary.ru/item.asp?id=43264173}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 399--411
\crossref{https://doi.org/10.1134/S0040577920030125}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083218180}
Linking options:
  • https://www.mathnet.ru/eng/tmf9812
  • https://doi.org/10.4213/tmf9812
  • https://www.mathnet.ru/eng/tmf/v202/i3/p458
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025