Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 2, Pages 278–290 (Mi tvp1156)  

Estimation in white Gaussian noise by means of finite number of linear statistics

G. K. Golubev, R. Z. Has'minskiĭ

Moscow
Abstract: We consider the asymptotical properties of estimators $T$, which are measurable in respect to statistics
$$ Y_i=\int_0^1 \psi_i(t)\,dX_\varepsilon(t) $$
if the observed process $X_\varepsilon(t)$ is determined by (1). The problem is to find the best «filters» $\psi_1(t),\dots,\psi_N(t)$ for subsequent estimation of $\theta$.
It is proved that the best in minimax sense are the functions $\psi_i$ which determine the $N$-dimensional projector on the subspace, which is the tightest one to $\partial S/\partial\theta$ in some sense. More precisely it is necessary to consider the tightest projector among the admissible (in the sense of (11)) projectors. The examples, for which the optimal filters $\psi_i$ can be found, are considered.
Received: 30.05.1978
English version:
Theory of Probability and its Applications, 1981, Volume 25, Issue 2, Pages 274–286
DOI: https://doi.org/10.1137/1125036
Bibliographic databases:
Language: Russian
Citation: G. K. Golubev, R. Z. Has'minskiǐ, “Estimation in white Gaussian noise by means of finite number of linear statistics”, Teor. Veroyatnost. i Primenen., 25:2 (1980), 278–290; Theory Probab. Appl., 25:2 (1981), 274–286
Citation in format AMSBIB
\Bibitem{GolKha80}
\by G.~K.~Golubev, R.~Z.~Has'minski{\v\i}
\paper Estimation in white Gaussian noise by means of finite number of linear statistics
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 2
\pages 278--290
\mathnet{http://mi.mathnet.ru/tvp1156}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=572561}
\zmath{https://zbmath.org/?q=an:0495.62082|0446.62086}
\transl
\jour Theory Probab. Appl.
\yr 1981
\vol 25
\issue 2
\pages 274--286
\crossref{https://doi.org/10.1137/1125036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LU72000004}
Linking options:
  • https://www.mathnet.ru/eng/tvp1156
  • https://www.mathnet.ru/eng/tvp/v25/i2/p278
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025