Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1998, Volume 43, Issue 2, Pages 390–397
DOI: https://doi.org/10.4213/tvp1476
(Mi tvp1476)
 

This article is cited in 5 scientific papers (total in 5 papers)

Short Communications

Asymptotic behavior of the extinction probabilitiesfor stopped branching processes

B. A. Sevast'yanov

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (400 kB) Citations (5)
Abstract: The initial multitype Galton–Watson branching process
$$ \mu(t)=(\mu_1(t),\mu_2(t),\dots,\mu_m(t)), \qquad t=0,1,2,\dots, $$
generates a stopped branching process $\xi(t)$, if the evolution of $\mu(t)$ is ‘`frozen’ when it hits a finite set $S$. It is assumed that the initial branching process $\mu(t)$ is subcritical and indecomposable. We prove that the extinction probability
$$ q_r^n=\lim_{t\to\infty}\mathsf{P}\{\xi(t)=r\mid\xi(0)=n\} $$
is asymptotically approaching, for any $r=(r_1,r_2\ldots r_m)\in S$, $n=(n_1\ldots n_m)\notin S$ for $\overline n=n_1+\dots+n_m\to\infty$, $n_i/\overline n\to a_i$, a function which is periodic in $\log_{1/R}\overline n$ with period 1. Here $R < 1$ is the Perron root of the mean matrix of the initial subcritical branching process $\mu(t)=(\mu_1(t),\mu_2(t)\ldots \mu_m(t))$ with elements $A_{ij}=\mathsf{E}\{\mu_j(1)\mid\mu(0)=e(i)\}$, and $e(i)=(\delta_{i1},\delta_{i2},\dots,\delta_{im})$, where $\delta_{ij}$ is the Kronecker symbol.
Keywords: multitype Galton–Watson branching process, indecomposable branching process, subcritical branching process, stopped branching process, extinction probabilities.
Received: 04.12.1997
English version:
Theory of Probability and its Applications, 1999, Volume 43, Issue 2, Pages 315–322
DOI: https://doi.org/10.1137/S0040585X97976933
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. A. Sevast'yanov, “Asymptotic behavior of the extinction probabilitiesfor stopped branching processes”, Teor. Veroyatnost. i Primenen., 43:2 (1998), 390–397; Theory Probab. Appl., 43:2 (1999), 315–322
Citation in format AMSBIB
\Bibitem{Sev98}
\by B.~A.~Sevast'yanov
\paper Asymptotic behavior of the extinction probabilitiesfor stopped branching processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1998
\vol 43
\issue 2
\pages 390--397
\mathnet{http://mi.mathnet.ru/tvp1476}
\crossref{https://doi.org/10.4213/tvp1476}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1679014}
\zmath{https://zbmath.org/?q=an:0956.60090}
\transl
\jour Theory Probab. Appl.
\yr 1999
\vol 43
\issue 2
\pages 315--322
\crossref{https://doi.org/10.1137/S0040585X97976933}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000083189300013}
Linking options:
  • https://www.mathnet.ru/eng/tvp1476
  • https://doi.org/10.4213/tvp1476
  • https://www.mathnet.ru/eng/tvp/v43/i2/p390
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025