Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 1, Pages 3–20 (Mi tvp1950)  

This article is cited in 35 scientific papers (total in 35 papers)

Some tests of chi-square type for continuous distributions

D. M. Čibisov

Moscow
Abstract: In testing the hypothesis that a sample $X_1,\dots,X_n$ is drawn from a d.f. $F(x,\theta)$ where $\theta\in R^s$ is an unspecified parameter, the following three test statistics are considered. 1. The $\chi^2$-statistic $X^2(\widehat\theta)$ with class boundaries fixed in advance and class probabilities $p_i(\widehat\theta)$ determined by an estimate $\widehat\theta$ (cf. [2]). 2. The $\chi^2$-statistic $X^2(\theta^*,\widehat\theta)$ with class boundaries $(a^*_{i-1},a^*_i)$ determined by $F(a^*_i,\theta^*)-F(a^*_{i-1},\theta^*)=p_i$, $p_1,\dots,p_k$ being prescribed probabilities and $\theta^*$ an estimate of $\theta$ (cf. [4]). 3. $Z^2(\widehat\theta)=n\sum p_i^{-1}[p_i-(F(Y_i,\widehat\theta)-F(Y_{i-1},\widehat\theta))]^2$, $Y_i$ being the sample $(p_1+\dots+p_i)$-quantile. It is proved, under certain regularity conditions, that $X^2(\theta^*,\widehat\theta)-X^2(\widehat\theta)\to0$ and $Z^2(\widehat\theta)-X^2(\widehat\theta)\to0$ provided $\theta^*$ is a consistent and $\widehat\theta$ a root $n$ consistent estimate and $p_i(\theta_0)=p_i$, $\theta_0$ being the true value of $\theta$. Therefore asymptotic results on $X^2(\widehat\theta)$ hold true for $X^2(\theta^*,\widehat\theta)$ and $Z^2(\widehat\theta)$. It is shown that the minimization of any of the three statistics gives estimates equivalent to the multinomial ML estimate, and that the use of the ML estimate based on the whole sample can decrease as well as increase the power.
Received: 11.12.1969
English version:
Theory of Probability and its Applications, 1971, Volume 16, Issue 1, Pages 1–22
DOI: https://doi.org/10.1137/1116001
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. M. Čibisov, “Some tests of chi-square type for continuous distributions”, Teor. Veroyatnost. i Primenen., 16:1 (1971), 3–20; Theory Probab. Appl., 16:1 (1971), 1–22
Citation in format AMSBIB
\Bibitem{Chi71}
\by D.~M.~{\v C}ibisov
\paper Some tests of chi-square type for continuous distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 1971
\vol 16
\issue 1
\pages 3--20
\mathnet{http://mi.mathnet.ru/tvp1950}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=283914}
\zmath{https://zbmath.org/?q=an:0234.62019}
\transl
\jour Theory Probab. Appl.
\yr 1971
\vol 16
\issue 1
\pages 1--22
\crossref{https://doi.org/10.1137/1116001}
Linking options:
  • https://www.mathnet.ru/eng/tvp1950
  • https://www.mathnet.ru/eng/tvp/v16/i1/p3
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025