|
|
Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 2, Pages 382–388
(Mi tvp2304)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Short Communications
Limit theorems for a sequence of branching processes with immigration
I. S. Badalbaeva, A. M. Zubkovb a Taškent
b Moscow
Abstract:
We consider a family $Z^{(n)}(\,\cdot\,)$ of branching processes with immigration defined by a formula
$$
Z^{(n)}(t)=\sum_{k\colon\theta_k^{(n)}\le t}\zeta_k^{(n)}(t-\theta_k^{(n)}),
$$
where $\theta_k^{(n)}$ – the moment of immigration of k$^{\text{th}}$ particle and $\zeta_k^{(n)}(\,\cdot\,)$ – a branching process of its descendants. It is supposed that:
$$
\text{i)}\quad
\mathbf P\{0\le\theta_1^{(n)}\le\theta_2^{(n)}\le\dotsb,\ \lim_{k\to\infty}\theta_k^{(n)}\}=1
$$
and all finite-dimensional distributions of the processes
$$
\tau^{(n)}(\alpha)=n^{-1}\sum_{k\colon\theta_k^{(n)}\le\alpha n}1
$$
converge to the corresponding finite-dimensional distrutions of a random process $T(\alpha)$, $\alpha\in[0,1]$ which is stochastically continuous at $\alpha=1$;
$$
\text{ii)}\quad
\mathbf Ms^{\xi_k^{(n)}(t)}=1-\frac{1-s}{1+(1-s)t\gamma}(1+\alpha_n(t;s)),
$$
where $\gamma=\mathrm{const}$ and $\alpha_n(t;s)\to 0$, $n\to\infty$, uniformly in the set $\{\varepsilon n\le t\le n,\,|s|\le 1\}$ for every $\varepsilon>0$.
Theorem 1. If the conditions i) and ii) are fulfilled, then
$$
\lim_{n\to\infty}\mathbf M\exp\biggl\{-u\frac{Z^{(n)}(n)}{n\gamma}\biggr\}=\mathbf M\exp\biggl\{-\frac{u}{\gamma}\int_0^1\frac{dT(s)}{1+(1-s)u}\biggr\}.
$$
Some generalizations are considered also.
Received: 27.04.1982
Citation:
I. S. Badalbaev, A. M. Zubkov, “Limit theorems for a sequence of branching processes with immigration”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 382–388; Theory Probab. Appl., 28:2 (1984), 404–409
Linking options:
https://www.mathnet.ru/eng/tvp2304 https://www.mathnet.ru/eng/tvp/v28/i2/p382
|
|