Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 2, Pages 404–410 (Mi tvp2307)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

The structure of the class of absolutely admissible tests

A. V. Bernštein

Moscow
Abstract: Let $Q$ be a distribution in $R^k$ which is absolutely continuous with respect to the Lebesgue measure, and let $Q_\lambda$, $\lambda\in\Lambda\subseteq R^k$ be an exponential family such that
$$ dQ_\lambda/dQ=b(\lambda)\exp\{(\lambda,y)\},\qquad y\in R^k, $$
where $(y,\lambda)$ denotes the scalar product in $R^k$ and $B(\lambda)$ is a norming constant. Let $y$ be an observation of the random variable $Y$ with distribution $Q_\lambda$. Let $\Phi_\varepsilon$ be a complete class of admissible tests in the problem of testing the hypothesis $H_0\colon\lambda=0$ against the alternatives $H_\varepsilon$: $\lambda\ne 0$, $|\lambda|\le\varepsilon$, and $\Phi_0=\bigcap\limits_{\varepsilon>0}\Phi_\varepsilon$. It is proved that the class $\Phi_0$ consists of tests the acceptance regions of which are either the ellipsoidal cylinder or the half-space. Moreover, it is shown that the necessary condition for the test $\varphi$ to belong to the class $\Phi_R$ for any $R>0$ is the following one: the boundary of the acceptance region of $\varphi$ is an analytic $(k-1)$-dimensional real manifold in $R^k$. In particular, the likelihood ratio test for normal distribution $N(\lambda,I)$ and alternatives $0<|\lambda|\le R$, $\lambda_1\ge 0$ is unadmissible.
Received: 13.05.1980
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 2, Pages 426–432
DOI: https://doi.org/10.1137/1128037
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Bernštein, “The structure of the class of absolutely admissible tests”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 404–410; Theory Probab. Appl., 28:2 (1984), 426–432
Citation in format AMSBIB
\Bibitem{Ber83}
\by A.~V.~Bern{\v s}tein
\paper The structure of the class of absolutely admissible tests
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 404--410
\mathnet{http://mi.mathnet.ru/tvp2307}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=700222}
\zmath{https://zbmath.org/?q=an:0538.62004|0515.62009}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 426--432
\crossref{https://doi.org/10.1137/1128037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900017}
Linking options:
  • https://www.mathnet.ru/eng/tvp2307
  • https://www.mathnet.ru/eng/tvp/v28/i2/p404
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025