|
|
Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 4, Pages 784–787
(Mi tvp2434)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline
N. M. Blank Har'kov
Abstract:
We prove some uniqueness theorems for functions $F(x)$ of bounded variation (and for distribution functions) with given values on a halfline. The uniqueness is proved for functions belonging to the classes of functions $F(x)$ such that the characteristic function
$$
\varphi(t;F)=\int_{-\infty}^\infty e^{itx}\,dF(x)
$$
is analytic in the strip $0<\operatorname{Im}t<H<\infty$, $\varphi(t;F)\ne 0$ ($0<\operatorname{Im}t<H$) and $\varphi(t;F)$ grows rather quickly when $\operatorname{Im}t\uparrow H$.
Received: 05.05.1980
Citation:
N. M. Blank, “On the uniqueness conditions for functions of bounded variation and for distribution functions with given values on a halfline”, Teor. Veroyatnost. i Primenen., 27:4 (1982), 784–787; Theory Probab. Appl., 27:4 (1983), 844–847
Linking options:
https://www.mathnet.ru/eng/tvp2434 https://www.mathnet.ru/eng/tvp/v27/i4/p784
|
|