|
|
Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 4, Pages 805–810
(Mi tvp2439)
|
|
|
|
This article is cited in 63 scientific papers (total in 63 papers)
Short Communications
The estimate of the distribution of noise in autoregressive scheme
M. V. Boldin Moscow
Abstract:
Let $u_j=\beta_1u_{j-1}+\dots+\beta_qu_{j-q}+\varepsilon_j$ ($j=1,\dots,n$) аге $n$ observations of autoregressive scheme, where $\beta_1,\dots,\beta_q$ are unknown nonrandom parameters and $\varepsilon_j$ are independent identically distributed random variables with zero mean, finite variance and
unknown distribution function $G(x)$. The estimate $\widehat G_n(x)$ of $G(x)$ is considered. It is proved that
$\sqrt n[\widehat G_n(G^{-1}(t))-t]$ converges weakly to the Brownian bridge when $u\to\infty$. The result is used in the testing of the hypotheses on $G(x)$.
Received: 03.04.1981
Citation:
M. V. Boldin, “The estimate of the distribution of noise in autoregressive scheme”, Teor. Veroyatnost. i Primenen., 27:4 (1982), 805–810; Theory Probab. Appl., 27:4 (1983), 866–871
Linking options:
https://www.mathnet.ru/eng/tvp2439 https://www.mathnet.ru/eng/tvp/v27/i4/p805
|
|