Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 2, Pages 362–368 (Mi tvp2516)  

This article is cited in 31 scientific papers (total in 31 papers)

Short Communications

On the detection of «discordance» of Wiener process

L. Yu. Vostrikova

Moscow
Abstract: The drift of a multidimensional Wiener process equals to $\theta_0$ on a time interval $[0,t_0]$ and equals to $\theta_1$ on $(t_0,T]$, the values $\theta_0$, $\theta_1$ and $t_0$ are unknown. We assume that the condition $\alpha T\le t_0\le(1-\alpha)T$ holds where the number $\alpha\in(0,1/2)$.
The maximum likelihood estimates of the unknown parameters $t_0/T$, $\theta_0$ and $\theta_1$ are given and their consistency is proved. We study also the test for checking the hypothesis $H_0\colon\theta_0=\theta_1$ against the alternative $H_1\colon\theta_0\ne\theta_1$ which is based on the likelihood function. An asymptotic expression for the probability of the error of the first kind is obtained.
Received: 22.04.1980
English version:
Theory of Probability and its Applications, 1982, Volume 26, Issue 2, Pages 356–362
DOI: https://doi.org/10.1137/1126034
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. Yu. Vostrikova, “On the detection of «discordance» of Wiener process”, Teor. Veroyatnost. i Primenen., 26:2 (1981), 362–368; Theory Probab. Appl., 26:2 (1982), 356–362
Citation in format AMSBIB
\Bibitem{Vos81}
\by L.~Yu.~Vostrikova
\paper On the detection of <<discordance>> of Wiener process
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 2
\pages 362--368
\mathnet{http://mi.mathnet.ru/tvp2516}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=616626}
\zmath{https://zbmath.org/?q=an:0481.62068|0469.62067}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 2
\pages 356--362
\crossref{https://doi.org/10.1137/1126034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NJ71600009}
Linking options:
  • https://www.mathnet.ru/eng/tvp2516
  • https://www.mathnet.ru/eng/tvp/v26/i2/p362
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025