|
|
Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 1, Pages 15–25
(Mi tvp2755)
|
|
|
|
This article is cited in 64 scientific papers (total in 64 papers)
Controlled branching processes
B. A. Sevast'yanov, A. M. Zubkov Moscow
Abstract:
We define the controlled branching process $\mu(t)$ as a process in which the number of particles $\mu(t+1)$ in the $(t+1)$-th generation equals the sum:
$$
\xi_1(t)+\dots+\xi_{\varphi(\mu(t))}(t),
$$
where $\xi_i(t)$, $i=1,2,\dots$, $t=1,2,\dots$, are independent identically distributed integer-valued random variables independent of $\mu(t)$, $\varphi(n)$ is a non-negative integer-valued function.
We investigate asymptotic properties of such processes when (1) $\varphi(n)\sim\alpha n$ or (2) $\varphi(n)\sim cn^\beta$ as $n\to\infty$. Let $A=\mathbf M\xi_i(t)$ in case (1) and $\mathbf P\{\xi_i(t)> x\}\sim cx^{-\alpha}$ as $x\to\infty$ in case (2). We prove that the process is subcritical if $\alpha A<1$ in case (1) and if $\beta<\alpha$ in case (2), and is supercritical if $\alpha A>1$ in case (1) and if $\beta>\alpha$ in case (2).
Received: 06.09.1973
Citation:
B. A. Sevast'yanov, A. M. Zubkov, “Controlled branching processes”, Teor. Veroyatnost. i Primenen., 19:1 (1974), 15–25; Theory Probab. Appl., 19:1 (1974), 14–24
Linking options:
https://www.mathnet.ru/eng/tvp2755 https://www.mathnet.ru/eng/tvp/v19/i1/p15
|
|