|
|
Teoriya Veroyatnostei i ee Primeneniya, 1974, Volume 19, Issue 1, Pages 36–51
(Mi tvp2757)
|
|
|
|
This article is cited in 24 scientific papers (total in 24 papers)
On the variance of the number of real roots of random polynomials
N. B. Maslova Leningrad
Abstract:
Let $\xi_0,\xi_1,\dots,\xi_n,\dots$ be a sequence of independent identically distributed random variables, $N_n$ be the number of real roots of the polynomial $\sum_{j=0}^n\xi_jx^j$. The main result is
Theorem 1. {\em If $\mathbf P\{\xi_j=0\}=0$, $\mathbf E\xi_j=0$, $\mathbf E|\xi_j|^{2+s}<\infty$ for some positive number $s$, then}
$$
\mathbf DN_n\sim4\biggl(\frac1\pi-\frac2{\pi^2}\biggr)\ln n\quad(n\to\infty).
$$
Received: 22.04.1971
Citation:
N. B. Maslova, “On the variance of the number of real roots of random polynomials”, Teor. Veroyatnost. i Primenen., 19:1 (1974), 36–51; Theory Probab. Appl., 19:1 (1974), 35–52
Linking options:
https://www.mathnet.ru/eng/tvp2757 https://www.mathnet.ru/eng/tvp/v19/i1/p36
|
|