Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 2, Pages 274–300
DOI: https://doi.org/10.4213/tvp285
(Mi tvp285)
 

This article is cited in 28 scientific papers (total in 28 papers)

Galton–Watson branching processes in a random environment. I: limit theorems

V. A. Vatutin, E. E. D'yakonova

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: Let $Z_n$ be the number of individuals at time $n$ in a branching process in a random environment generated by independent identically distributed random probability generating functions $f_0(s),f_1(s),\dots,f_n(s),\dots$ . Let
$$ X_i=\log f_{i-1}'(1),\qquad i=0,1,2,\dots; \qquad S_0=0,\quad S_n=X_1+\dots+X_n,\qquad n\ge 1. $$
It is shown that if $Z_n$ is, in a sense, “critical,” then there exists a limit in distribution
$$ \lim_{n\to\infty}\exp\Bigl\{-\min_{0\le j\le n}S_j\Bigr\}\,\mathbf{P}\{Z_n>0\mid f_0,\dots,f_{n-1}\}=\zeta, $$
where $\zeta$ is a proper random variable positive with probability 1. In addition, it is shown that for a “typical” realization of the environment the number of individuals $Z_n$ given $\{Z_n>0\}$ grows as $\exp\{S_n-\min_{0\le j\le n}S_j\}$ (up to a positive finite random multiplier).
Keywords: branching processes in random environment, survival probability, critical branching process, random walks, stable distributions, harmonic functions.
Received: 30.10.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 2, Pages 314–336
DOI: https://doi.org/10.1137/S0040585X97980373
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Teor. Veroyatnost. i Primenen., 48:2 (2003), 274–300; Theory Probab. Appl., 48:2 (2004), 314–336
Citation in format AMSBIB
\Bibitem{VatDya03}
\by V.~A.~Vatutin, E.~E.~D'yakonova
\paper Galton--Watson branching processes in a random environment.~I: limit theorems
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 2
\pages 274--300
\mathnet{http://mi.mathnet.ru/tvp285}
\crossref{https://doi.org/10.4213/tvp285}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2015453}
\zmath{https://zbmath.org/?q=an:1079.60080}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 2
\pages 314--336
\crossref{https://doi.org/10.1137/S0040585X97980373}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222357100009}
Linking options:
  • https://www.mathnet.ru/eng/tvp285
  • https://doi.org/10.4213/tvp285
  • https://www.mathnet.ru/eng/tvp/v48/i2/p274
    Cycle of papers
    This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025