|
|
Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 2, Pages 402–403
(Mi tvp3151)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Short Communications
An inequality for moments of a random variable
V. V. Petrov Leningrad
Abstract:
Let $X$ be a random variable. For any $r>0$, we set $\beta_r=\mathbf E|X|^r$. The following inequality is proved:
$$
\beta_r^{1/r}\le\gamma^{1/r-1/s}\beta_s^{1/s}\quad(r<s)
$$
where $\gamma=\mathbf P(X\ne0)$. This inequality is optimal in a certain sense.
Received: 11.11.1974
Citation:
V. V. Petrov, “An inequality for moments of a random variable”, Teor. Veroyatnost. i Primenen., 20:2 (1975), 402–403; Theory Probab. Appl., 20:2 (1976), 391–392
Linking options:
https://www.mathnet.ru/eng/tvp3151 https://www.mathnet.ru/eng/tvp/v20/i2/p402
|
|