Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 3, Pages 656–660 (Mi tvp3326)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On decompositions of radially symmetric distributions

L. S. Kudina

Kharkov State University
Full-text PDF (353 kB) Citations (2)
Abstract: Let $P_1$ and $P_2$ be probability distributions in $R^n$, $n\ge2$, and $P=P_1*P_2$. If $P$ is radially symmetric (i.e. invariant with respect to rotation around some point) and satisfies the condition
$$ \exists\varepsilon>0\colon P(\{x\in R^n\colon|x|>r\})=O(\exp\{-r^{2+\varepsilon}\}),\quad r\to\infty,\eqno(1) $$
then $P_1$ and $P_2$ must be radially symmetrical too. Condition (1) cannot be weakened by putting $\varepsilon=0$.
A sufficient condition is obtained for a radially symmetric distribution to be indecomposable into two proper distributions. The uniform distribution in the re-dimensional unit ball is shown to be indecomposable for $n\ge3$.
Received: 06.02.1975
English version:
Theory of Probability and its Applications, 1976, Volume 20, Issue 3, Pages 641–644
DOI: https://doi.org/10.1137/1120072
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. S. Kudina, “On decompositions of radially symmetric distributions”, Teor. Veroyatnost. i Primenen., 20:3 (1975), 656–660; Theory Probab. Appl., 20:3 (1976), 641–644
Citation in format AMSBIB
\Bibitem{Kud75}
\by L.~S.~Kudina
\paper On decompositions of radially symmetric distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 1975
\vol 20
\issue 3
\pages 656--660
\mathnet{http://mi.mathnet.ru/tvp3326}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=378030}
\zmath{https://zbmath.org/?q=an:0347.60011}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 20
\issue 3
\pages 641--644
\crossref{https://doi.org/10.1137/1120072}
Linking options:
  • https://www.mathnet.ru/eng/tvp3326
  • https://www.mathnet.ru/eng/tvp/v20/i3/p656
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025